79
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A Review of the Effects of Physical Activity and Exercise on Cognitive and Brain Functions in Older Adults

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Studies supporting the notion that physical activity and exercise can help alleviate the negative impact of age on the body and the mind abound. This literature review provides an overview of important findings in this fast growing research domain. Results from cross-sectional, longitudinal, and intervention studies with healthy older adults, frail patients, and persons suffering from mild cognitive impairment and dementia are reviewed and discussed. Together these finding suggest that physical exercise is a promising nonpharmaceutical intervention to prevent age-related cognitive decline and neurodegenerative diseases.

          Related collections

          Most cited references118

          • Record: found
          • Abstract: found
          • Article: not found

          Cardiovascular fitness, cortical plasticity, and aging.

          Cardiovascular fitness is thought to offset declines in cognitive performance, but little is known about the cortical mechanisms that underlie these changes in humans. Research using animal models shows that aerobic training increases cortical capillary supplies, the number of synaptic connections, and the development of new neurons. The end result is a brain that is more efficient, plastic, and adaptive, which translates into better performance in aging animals. Here, in two separate experiments, we demonstrate for the first time to our knowledge, in humans that increases in cardiovascular fitness results in increased functioning of key aspects of the attentional network of the brain during a cognitively challenging task. Specifically, highly fit (Study 1) or aerobically trained (Study 2) persons show greater task-related activity in regions of the prefrontal and parietal cortices that are involved in spatial selection and inhibitory functioning, when compared with low-fit (Study 1) or nonaerobic control (Study 2) participants. Additionally, in both studies there exist groupwise differences in activation of the anterior cingulate cortex, which is thought to monitor for conflict in the attentional system, and signal the need for adaptation in the attentional network. These data suggest that increased cardiovascular fitness can affect improvements in the plasticity of the aging human brain, and may serve to reduce both biological and cognitive senescence in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aerobic fitness is associated with hippocampal volume in elderly humans.

            Deterioration of the hippocampus occurs in elderly individuals with and without dementia, yet individual variation exists in the degree and rate of hippocampal decay. Determining the factors that influence individual variation in the magnitude and rate of hippocampal decay may help promote lifestyle changes that prevent such deterioration from taking place. Aerobic fitness and exercise are effective at preventing cortical decay and cognitive impairment in older adults and epidemiological studies suggest that physical activity can reduce the risk for developing dementia. However, the relationship between aerobic fitness and hippocampal volume in elderly humans is unknown. In this study, we investigated whether individuals with higher levels of aerobic fitness displayed greater volume of the hippocampus and better spatial memory performance than individuals with lower fitness levels. Furthermore, in exploratory analyses, we assessed whether hippocampal volume mediated the relationship between fitness and spatial memory. Using a region-of-interest analysis on magnetic resonance images in 165 nondemented older adults, we found a triple association such that higher fitness levels were associated with larger left and right hippocampi after controlling for age, sex, and years of education, and larger hippocampi and higher fitness levels were correlated with better spatial memory performance. Furthermore, we demonstrated that hippocampal volume partially mediated the relationship between higher fitness levels and enhanced spatial memory. Our results clearly indicate that higher levels of aerobic fitness are associated with increased hippocampal volume in older humans, which translates to better memory function. Copyright 2008 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Resistance training and executive functions: a 12-month randomized controlled trial.

              Cognitive decline among seniors is a pressing health care issue. Specific exercise training may combat cognitive decline. We compared the effect of once-weekly and twice-weekly resistance training with that of twice-weekly balance and tone exercise training on the performance of executive cognitive functions in senior women. In this single-blinded randomized trial, 155 community-dwelling women aged 65 to 75 years living in Vancouver were randomly allocated to once-weekly (n = 54) or twice-weekly (n = 52) resistance training or twice-weekly balance and tone training (control group) (n = 49). The primary outcome measure was performance on the Stroop test, an executive cognitive test of selective attention and conflict resolution. Secondary outcomes of executive cognitive functions included set shifting as measured by the Trail Making Tests (parts A and B) and working memory as assessed by verbal digit span forward and backward tests. Gait speed, muscular function, and whole-brain volume were also secondary outcome measures. Both resistance training groups significantly improved their performance on the Stroop test compared with those in the balance and tone group (P < or = .03). Task performance improved by 12.6% and 10.9% in the once-weekly and twice-weekly resistance training groups, respectively; it deteriorated by 0.5% in the balance and tone group. Enhanced selective attention and conflict resolution was significantly associated with increased gait speed. Both resistance training groups demonstrated reductions in whole-brain volume compared with the balance and tone group at the end of the study (P < or = .03). Twelve months of once-weekly or twice-weekly resistance training benefited the executive cognitive function of selective attention and conflict resolution among senior women. clinicaltrials.gov Identifier: NCT00426881.
                Bookmark

                Author and article information

                Journal
                J Aging Res
                J Aging Res
                JAR
                Journal of Aging Research
                Hindawi Publishing Corporation
                2090-2204
                2090-2212
                2013
                11 September 2013
                : 2013
                : 657508
                Affiliations
                1PERFORM Centre, Concordia University, Montreal, QC, Canada
                2Research Center, Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada
                3Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
                4Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
                5Brain Research Centre, University of British Columbia, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
                Author notes

                Academic Editor: Karl Rosengren

                Article
                10.1155/2013/657508
                3786463
                24102028
                80f24e64-06e5-473b-beb4-30576b3be4e9
                Copyright © 2013 Louis Bherer et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 8 May 2013
                : 31 July 2013
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article