6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      α-Synuclein filaments from transgenic mouse and human synucleinopathy-containing brains are major seed-competent species

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Assembled α-synuclein in nerve cells and glial cells is the defining pathological feature of neurodegenerative diseases called synucleinopathies. Seeds of α-synuclein can induce the assembly of monomeric protein. Here, we used sucrose gradient centrifugation and transiently transfected HEK 293T cells to identify the species of α-synuclein from the brains of homozygous, symptomatic mice transgenic for human mutant A53T α-synuclein (line M83) that seed aggregation. The most potent fractions contained Sarkosyl-insoluble assemblies enriched in filaments. We also analyzed six cases of idiopathic Parkinson's disease (PD), one case of familial PD, and six cases of multiple system atrophy (MSA) for their ability to induce α-synuclein aggregation. The MSA samples were more potent than those of idiopathic PD in seeding aggregation. We found that following sucrose gradient centrifugation, the most seed-competent fractions from PD and MSA brains are those that contain Sarkosyl-insoluble α-synuclein. The fractions differed between PD and MSA, consistent with the presence of distinct conformers of assembled α-synuclein in these different samples. We conclude that α-synuclein filaments are the main driving force for amplification and propagation of pathology in synucleinopathies.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          alpha-Synuclein is phosphorylated in synucleinopathy lesions.

          The deposition of the abundant presynaptic brain protein alpha-synuclein as fibrillary aggregates in neurons or glial cells is a hallmark lesion in a subset of neurodegenerative disorders. These disorders include Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy, collectively referred to as synucleinopathies. Importantly, the identification of missense mutations in the alpha-synuclein gene in some pedigrees of familial PD has strongly implicated alpha-synuclein in the pathogenesis of PD and other synucleinopathies. However, specific post-translational modifications that underlie the aggregation of alpha-synuclein in affected brains have not, as yet, been identified. Here, we show by mass spectrometry analysis and studies with an antibody that specifically recognizes phospho-Ser 129 of alpha-synuclein, that this residue is selectively and extensively phosphorylated in synucleinopathy lesions. Furthermore, phosphorylation of alpha-synuclein at Ser 129 promoted fibril formation in vitro. These results highlight the importance of phosphorylation of filamentous proteins in the pathogenesis of neurodegenerative disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            G51D α-synuclein mutation causes a novel parkinsonian-pyramidal syndrome.

            To date, 3 rare missense mutations in the SNCA (α-synuclein) gene and the more frequent duplications or triplications of the wild-type gene are known to cause a broad array of clinical and pathological symptoms in familial Parkinson disease (PD). Here, we describe a French family with a parkinsonian-pyramidal syndrome harboring a novel heterozygous SNCA mutation. Whole exome sequencing of DNA from 3 patients in a 3-generation pedigree was used to identify a new PD-associated mutation in SNCA. Clinical and pathological features of the patients were analyzed. The cytotoxic effects of the mutant and wild-type proteins were assessed by analytical ultracentrifugation, thioflavin T binding, transmission electron microscopy, cell viability assay, and caspase-3 activation. We identified a novel SNCA G51D (c.152 G>A) mutation that cosegregated with the disease and was absent from controls. G51D was associated with an unusual PD phenotype characterized by early disease onset, moderate response to levodopa, rapid progression leading to loss of autonomy and death within a few years, marked pyramidal signs including bilateral extensor plantar reflexes, occasionally spasticity, and frequently psychiatric symptoms. Pathological lesions predominated in the basal ganglia and the pyramidal tracts and included fine, diffuse cytoplasmic inclusions containing phospho-α-synuclein in superficial layers of the cerebral cortex, including the entorhinal cortex. Functional studies showed that G51D α-synuclein oligomerizes more slowly and its fibrils are more toxic than those of the wild-type protein. We have identified a novel SNCA G51D mutation that causes a form of PD with unusual clinical, neuropathological, and biochemical features. Copyright © 2013 American Neurological Association.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly.

              Neuronal and oligodendrocytic aggregates of fibrillar alpha-synuclein define several diseases of the nervous system. It is likely that these inclusions impair vital metabolic processes and compromise viability of affected cells. Here, we report that a 12-amino acid stretch ((71)VTGVTAVAQKTV(82)) in the middle of the hydrophobic domain of human alpha-synuclein is necessary and sufficient for its fibrillization based on the following observations: 1) human beta-synuclein is highly homologous to alpha-synuclein but lacks these 12 residues, and it does not assemble into filaments in vitro; 2) the rate of alpha-synuclein polymerization in vitro decreases after the introduction of a single charged amino acid within these 12 residues, and a deletion within this region abrogates assembly; 3) this stretch of 12 amino acids appears to form the core of alpha-synuclein filaments, because it is resistant to proteolytic digestion in alpha-synuclein filaments; and 4) synthetic peptides corresponding to this 12-amino acid stretch self-polymerize to form filaments, and these peptides promote fibrillization of full-length human alpha-synuclein in vitro. Thus, we have identified key sequence elements necessary for the assembly of human alpha-synuclein into filaments, and these elements may be exploited as targets for the design of drugs that inhibit alpha-synuclein fibrillization and might arrest disease progression.
                Bookmark

                Author and article information

                Journal
                J Biol Chem
                J. Biol. Chem
                jbc
                jbc
                JBC
                The Journal of Biological Chemistry
                American Society for Biochemistry and Molecular Biology (11200 Rockville Pike, Suite 302, Rockville, MD 20852-3110, U.S.A. )
                0021-9258
                1083-351X
                8 May 2020
                24 March 2020
                24 March 2020
                : 295
                : 19
                : 6652-6664
                Affiliations
                []MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
                [§ ]The Mayo Clinic, Jacksonville, Florida 32224
                []Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
                Author notes
                [1 ] Honorary Professor in the Department of Clinical Neurosciences of the University of Cambridge. To whom correspondence should be addressed: MRC Laboratory of Molecular Biology, Francis Crick Ave., Cambridge CB2 0QH, United Kingdom. Tel: 44-1223-267056; E-mail: mg@ 123456mrc-lmb.cam.ac.uk .

                Edited by Paul E. Fraser

                Author information
                https://orcid.org/0000-0002-5542-4324
                https://orcid.org/0000-0001-6760-1669
                https://orcid.org/0000-0002-4363-1262
                https://orcid.org/0000-0002-1842-8019
                Article
                RA119.012179
                10.1074/jbc.RA119.012179
                7212628
                32209651
                80fc7901-4447-433f-9ddc-f4b38818eb48
                © 2020 Morgan et al.

                Author's Choice—Final version open access under the terms of the Creative Commons CC-BY license.

                History
                : 4 December 2019
                : 6 March 2020
                Funding
                Funded by: National Institutes of Health NIA , open-funder-registry 10.13039/100000049;
                Award ID: PHS P30 AG01033
                Award Recipient :
                Categories
                Neurobiology

                Biochemistry
                alpha-synuclein (α-synuclein),oligomer,neurodegeneration,parkinson disease,fibril,brain disease,lewy body,multiple system atrophy,seeded aggregation,synucleinopathy

                Comments

                Comment on this article