72
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mimetic Gravity: A Review of Recent Developments and Applications to Cosmology and Astrophysics

      , ,
      Advances in High Energy Physics
      Hindawi Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mimetic gravity is a Weyl-symmetric extension of General Relativity, related to the latter by a singular disformal transformation, wherein the appearance of a dust-like perfect fluid can mimic cold dark matter at a cosmological level. Within this framework, it is possible to provide a unified geometrical explanation for dark matter, the late-time acceleration, and inflation, making it a very attractive theory. In this review, we summarize the main aspects of mimetic gravity, as well as extensions of the minimal formulation of the model. We devote particular focus to the reconstruction technique, which allows the realization of any desired expansionary history of the universe by an accurate choice of potential or other functions defined within the theory (as in the case of mimeticf(R)gravity). We briefly discuss cosmological perturbation theory within mimetic gravity. As a case study within which we apply the concepts previously discussed, we study a mimetic Hořava-like theory, of which we explore solutions and cosmological perturbations in detail. Finally, we conclude the review by discussing static spherically symmetric solutions within mimetic gravity and apply our findings to the problem of galactic rotation curves. Our review provides an introduction to mimetic gravity, as well as a concise but self-contained summary of recent findings, progress, open questions, and outlooks on future research directions.

          Related collections

          Most cited references453

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A Large Mass Hierarchy from a Small Extra Dimension

          We propose a new higher-dimensional mechanism for solving the Hierarchy Problem. The Weak scale is generated from a large scale of order the Planck scale through an exponential hierarchy. However, this exponential arises not from gauge interactions but from the background metric (which is a slice of AdS_5 spacetime). This mechanism relies on the existence of only a single additional dimension. We demonstrate a simple explicit example of this mechanism with two three-branes, one of which contains the Standard Model fields. The experimental consequences of this scenario are new and dramatic. There are fundamental spin-2 excitations with mass of weak scale order, which are coupled with weak scale as opposed to gravitational strength to the standard model particles. The phenomenology of these models is quite distinct from that of large extra dimension scenarios; none of the current constraints on theories with very large extra dimensions apply.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            An Alternative to Compactification

            Conventional wisdom states that Newton's force law implies only four non-compact dimensions. We demonstrate that this is not necessarily true in the presence of a non-factorizable background geometry. The specific example we study is a single 3-brane embedded in five dimensions. We show that even without a gap in the Kaluza-Klein spectrum, four-dimensional Newtonian and general relativistic gravity is reproduced to more than adequate precision.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant

              We present observations of 10 type Ia supernovae (SNe Ia) between 0.16 0) and a current acceleration of the expansion (i.e., q_0 0, the spectroscopically confirmed SNe Ia are consistent with q_0 0 at the 3.0 sigma and 4.0 sigma confidence levels, for two fitting methods respectively. Fixing a ``minimal'' mass density, Omega_M=0.2, results in the weakest detection, Omega_Lambda>0 at the 3.0 sigma confidence level. For a flat-Universe prior (Omega_M+Omega_Lambda=1), the spectroscopically confirmed SNe Ia require Omega_Lambda >0 at 7 sigma and 9 sigma level for the two fitting methods. A Universe closed by ordinary matter (i.e., Omega_M=1) is ruled out at the 7 sigma to 8 sigma level. We estimate the size of systematic errors, including evolution, extinction, sample selection bias, local flows, gravitational lensing, and sample contamination. Presently, none of these effects reconciles the data with Omega_Lambda=0 and q_0 > 0.
                Bookmark

                Author and article information

                Journal
                Advances in High Energy Physics
                Advances in High Energy Physics
                Hindawi Limited
                1687-7357
                1687-7365
                2017
                2017
                : 2017
                :
                : 1-43
                Article
                10.1155/2017/3156915
                81349ff5-135f-4c72-b9b8-37e6ceddefa2
                © 2017

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article