7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Continuous glucose monitoring system: Is it really accurate, safe and clinically useful?

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The continuous glucose monitoring system (CGM) has been used for constant checking of glucose level by measuring interstitial glucose concentrations, since the early days of the 21st century. It can potentially improve diabetes care if used carefully with the understanding of the characteristics of this system. Although there is a time lag of approximately 5–15 min between blood and interstitial glucose levels, the system is considered the most suitable device for meticulous glucose control and prevention of hypoglycemia. A large number of studies have examined its accuracy, safety and clinical effectiveness. The continuous glucose‐error grid analysis (CG‐EGA), designed by WL Clarke, evaluates the clinical accuracy of CGM. It examines ‘temporal’ characteristics of the data, analyzing pairs of reference and sensor readings as a process in time represented by a ‘bidimensional’ time series and taking into account inherent physiological time lags. Investment in CG‐EGA is clearly meaningful, even though there are other methodologies for evaluation. The use of each method complementarily is the most effective way to prove the accuracy of the device. The device has improved gradually, and real‐time CGM, which allows real‐time monitoring of blood glucose level, is already available commercially. The use of real‐time CGM could potentially lead to over‐ or undertreatment with insulin. Patient education through proper and effective handling of the new device is essential to improve diabetes care. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2012.00197.x, 2012)

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          A new consensus error grid to evaluate the clinical significance of inaccuracies in the measurement of blood glucose.

          The objectives of this study were 1) to construct new error grids (EGs) for blood glucose (BG) self-monitoring by using the expertise of a large panel of clinicians and 2) to use the new EGs to evaluate the accuracy of BG measurements made by patients. To construct new EGs for type 1 and type 2 diabetic patients, a total of 100 experts of diabetes were asked to assign any error in BG measurement to 1 of 5 risk categories. We used these EGs to evaluate the accuracy of self-monitoring of blood glucose (SMBG) levels in 152 diabetic patients. The SMBG data were used to compare the new type 1 diabetes EG with a traditional EG. Both the type 1 and type 2 diabetes EGs divide the risk plane into 8 concentric zones with no discontinuities. The new EGs are similar to each other, but they differ from the traditional EG in several significant ways. When used to evaluate a data set of measurements made by a sample of patients experienced in SMBG, the new type 1 diabetes EG rated 98.6% of their measurements as clinically acceptable, compared with 95% for the traditional EG. The consensus EGs furnish a new tool for evaluating errors in the measurement of BG for patients with type 1 and type 2 diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Timing of changes in interstitial and venous blood glucose measured with a continuous subcutaneous glucose sensor.

            The objective of this study was to use a subcutaneous continuous glucose sensor to determine time differences in the dynamics of blood glucose and interstitial glucose. A total of 14 patients with type 1 diabetes each had two sensors (Medtronic/MiniMed CGMS) placed subcutaneously in the abdomen, acquiring data every 5 min. Blood glucose was sampled every 5 min for 8 h, and two liquid meals were given. A smoothing algorithm was applied to the blood glucose and interstitial glucose curves. The first derivatives of the glucose traces defined and quantified the timing of rises, peaks, falls, and nadirs. Altogether, 24 datasets were used for the analysis of time differences between interstitial and blood glucose and between sensors in each patient. Time differences between blood and interstitial glucose ranged from 4 to 10 min, with the interstitial glucose lagging behind blood glucose in 81% of cases (95% CIs 72.5 and 89.5%). The mean (+/-SD) difference between the two sensors in each patient was 6.7 +/- 5.1 min, representing random variation in sensor response. In conclusion, there is a time lag of interstitial glucose behind blood glucose, regardless of whether glycemia is rising or falling, but intersensor variability is considerable in this sensor system. Comparisons of interstitial and blood glucose kinetics must take statistical account of variability between sensors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Short- and Long-Term Effects of Real-Time Continuous Glucose Monitoring in Patients With Type 2 Diabetes

              OBJECTIVE To determine whether short-time, real-time continuous glucose monitoring (RT-CGM) has long-term salutary glycemic effects in patients with type 2 diabetes who are not on prandial insulin. RESEARCH DESIGN AND METHODS This was a randomized controlled trial of 100 adults with type 2 diabetes who were not on prandial insulin. This study compared the effects of 12 weeks of intermittent RT-CGM with self-monitoring of blood glucose (SMBG) on glycemic control over a 40-week follow-up period. Subjects received diabetes care from their regular provider without therapeutic intervention from the study team. RESULTS There was a significant difference in A1C at the end of the 3-month active intervention that was sustained during the follow-up period. The mean, unadjusted A1C decreased by 1.0, 1.2, 0.8, and 0.8% in the RT-CGM group vs. 0.5, 0.5, 0.5, and 0.2% in the SMBG group at 12, 24, 38, and 52 weeks, respectively (P = 0.04). There was a significantly greater decline in A1C over the course of the study for the RT-CGM group than for the SMBG group, after adjusting for covariates (P < 0.0001). The subjects who used RT-CGM per protocol (≥48 days) improved the most (P < 0.0001). The improvement in the RT-CGM group occurred without a greater intensification of medication compared with those in the SMBG group. CONCLUSIONS Subjects with type 2 diabetes not on prandial insulin who used RT-CGM intermittently for 12 weeks significantly improved glycemic control at 12 weeks and sustained the improvement without RT-CGM during the 40-week follow-up period, compared with those who used only SMBG.
                Bookmark

                Author and article information

                Journal
                J Diabetes Investig
                J Diabetes Investig
                10.1111/(ISSN)2040-1124
                JDI
                ST
                Journal of Diabetes Investigation
                Blackwell Publishing Ltd (Oxford, UK )
                2040-1116
                2040-1124
                06 June 2012
                17 February 2012
                : 3
                : 3 ( doiID: 10.1111/jdi.2012.3.issue-3 )
                : 225-230
                Affiliations
                [ 1 ]Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
                Author notes
                [*] [* ] Takahisa Hirose Tel.: +81‐3‐5802‐1579 Fax: +81‐3‐3813‐5996 
E‐mail address: hirosemd@ 123456juntendo.ac.jp
                Article
                JDI197
                10.1111/j.2040-1124.2012.00197.x
                4014941
                81472511-c1e4-4ecc-be67-7c83aaa79fb5
                © 2012 Asian Association for the Study of Diabetes and Blackwell Publishing Asia Pty Ltd
                History
                Page count
                Figures: 3, Tables: 0, Pages: 6
                Categories
                Review Articles
                Mini Review
                Custom metadata
                2.0
                June 2012
                Converter:WILEY_ML3GV2_TO_NLM version:3.9.3 mode:remove_FC converted:04.02.2014

                continuous glucose monitoring system,continuous glucose‐error grid analysis,patient education

                Comments

                Comment on this article