+1 Recommend
1 collections

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)


      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Effect of Nintedanib on T-Cell Activation, Subsets and Functions


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          T cells are important regulators of inflammation and, via release of mediators, can contribute to pulmonary fibrosis. Nintedanib is approved for the treatment of idiopathic pulmonary fibrosis, systemic sclerosis-associated interstitial lung disease (ILD) and chronic fibrosing ILDs with a progressive phenotype. However, how nintedanib targets T cells has not been elucidated.

          Materials and Methods

          We investigated the immunomodulatory effects of nintedanib on T cells and peripheral blood mononuclear cells isolated from healthy donors. Cells were pre-incubated with different concentrations of nintedanib and then stimulated for 24 hours with anti-CD3 with or without anti-CD28 and with or without different cytokines. Levels of interferon gamma (IFN-γ), interleukin (IL)-2, IL-4, IL-5, IL-10, IL-12p70 and IL-13 were quantitated. Western blotting with primary antibodies against phospho-Lck-Y394, phospho-Lck-Y505, Lck-total and Cofilin examined the phosphorylation level of the Lck protein. In vitro T-cell proliferation, T-cell clustering and different T-cell populations were also assessed.


          Nintedanib blocked T-cell activation through inhibiting Lck-Y394 phosphorylation. Pretreatment of T cells with nintedanib reduced cluster formation as a marker of activation and inhibited the release of IFN-γ, IL-2, IL-4, IL-5, IL-10, IL-12p70 and IL-13 at clinically relevant concentrations ranging from 5–77 nmol/L. Nintedanib did not alter T-cell proliferation or numbers of CD4+ and CD8+ T cells, but did increase stimulated Th17-like cells without increasing IL-17A levels.


          These immunomodulatory effects may further explain how nintedanib slows the progression of pulmonary fibrosis in various ILDs.

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis.

          Nintedanib (formerly known as BIBF 1120) is an intracellular inhibitor that targets multiple tyrosine kinases. A phase 2 trial suggested that treatment with 150 mg of nintedanib twice daily reduced lung-function decline and acute exacerbations in patients with idiopathic pulmonary fibrosis. We conducted two replicate 52-week, randomized, double-blind, phase 3 trials (INPULSIS-1 and INPULSIS-2) to evaluate the efficacy and safety of 150 mg of nintedanib twice daily as compared with placebo in patients with idiopathic pulmonary fibrosis. The primary end point was the annual rate of decline in forced vital capacity (FVC). Key secondary end points were the time to the first acute exacerbation and the change from baseline in the total score on the St. George's Respiratory Questionnaire, both assessed over a 52-week period. A total of 1066 patients were randomly assigned in a 3:2 ratio to receive nintedanib or placebo. The adjusted annual rate of change in FVC was -114.7 ml with nintedanib versus -239.9 ml with placebo (difference, 125.3 ml; 95% confidence interval [CI], 77.7 to 172.8; P<0.001) in INPULSIS-1 and -113.6 ml with nintedanib versus -207.3 ml with placebo (difference, 93.7 ml; 95% CI, 44.8 to 142.7; P<0.001) in INPULSIS-2. In INPULSIS-1, there was no significant difference between the nintedanib and placebo groups in the time to the first acute exacerbation (hazard ratio with nintedanib, 1.15; 95% CI, 0.54 to 2.42; P=0.67); in INPULSIS-2, there was a significant benefit with nintedanib versus placebo (hazard ratio, 0.38; 95% CI, 0.19 to 0.77; P=0.005). The most frequent adverse event in the nintedanib groups was diarrhea, with rates of 61.5% and 18.6% in the nintedanib and placebo groups, respectively, in INPULSIS-1 and 63.2% and 18.3% in the two groups, respectively, in INPULSIS-2. In patients with idiopathic pulmonary fibrosis, nintedanib reduced the decline in FVC, which is consistent with a slowing of disease progression; nintedanib was frequently associated with diarrhea, which led to discontinuation of the study medication in less than 5% of patients. (Funded by Boehringer Ingelheim; INPULSIS-1 and INPULSIS-2 ClinicalTrials.gov numbers, NCT01335464 and NCT01335477.).
            • Record: found
            • Abstract: found
            • Article: not found

            Nintedanib in Progressive Fibrosing Interstitial Lung Diseases

            Preclinical data have suggested that nintedanib, an intracellular inhibitor of tyrosine kinases, inhibits processes involved in the progression of lung fibrosis. Although the efficacy of nintedanib has been shown in idiopathic pulmonary fibrosis, its efficacy across a broad range of fibrosing lung diseases is unknown.
              • Record: found
              • Abstract: found
              • Article: not found

              Nintedanib for Systemic Sclerosis–Associated Interstitial Lung Disease

              Interstitial lung disease (ILD) is a common manifestation of systemic sclerosis and a leading cause of systemic sclerosis-related death. Nintedanib, a tyrosine kinase inhibitor, has been shown to have antifibrotic and antiinflammatory effects in preclinical models of systemic sclerosis and ILD.

                Author and article information

                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                08 March 2021
                : 15
                : 997-1011
                [1 ]Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG , Biberach, Germany
                Author notes
                Correspondence: Lutz Wollin Boehringer Ingelheim Pharma GmbH & Co. KG , Birkendorfer Str. 65, Biberach, 88397, GermanyTel +49 7351 54-94993Fax +49 7351 83-94993 Email stefan-lutz.wollin@boehringer-ingelheim.com
                Author information
                © 2021 Ubieta et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                : 31 October 2020
                : 15 February 2021
                Page count
                Figures: 0, Tables: 5, References: 59, Pages: 15
                Funded by: Boehringer Ingelheim, open-funder-registry 10.13039/100001003;
                This study was conducted at Boehringer Ingelheim, Biberach, Germany.
                Original Research

                Pharmacology & Pharmaceutical medicine
                cytokines,fibrosis,inflammation,nintedanib,t cells,tyrosine kinase


                Comment on this article