0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      IMPROVED SPEAKER-INDEPENDENT EMOTION RECOGNITION FROM SPEECH USING TWO-STAGE FEATURE REDUCTION

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the recent years, researchers are focusing to improve the accuracy of speech emotion recognition. Generally, high emotion recognition accuracies were obtained for two-class emotion recognition, but multi-class emotion recognition is still a challenging task . The main aim of this work is to propose a two-stage feature reduction using Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) for improving the accuracy of the speech emotion recognition (ER) system. Short-term speech features were extracted from the emotional speech signals. Experiments were carried out using four different supervised classifi ers with two different emotional speech databases. From the experimental results, it can be inferred that the proposed method provides better accuracies of 87.48% for speaker dependent (SD) and gender dependent (GD) ER experiment, 85.15% for speaker independent (SI) ER experiment, and 87.09% for gender independent (GI) experiment.  

          Related collections

          Author and article information

          Contributors
          Malaysia
          Malaysia
          Malaysia
          Malaysia
          Journal
          Journal of Information and Communication Technology
          UUM Press
          April 28 2015
          : 14
          : 57-76
          Affiliations
          [1 ]School of Mechatronic Engineering, Universiti Malaysia Perlis, Malaysia
          Article
          8156
          10.32890/jict2015.14.0.8156

          All content is freely available without charge to users or their institutions. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission of the publisher or the author. Articles published in the journal are distributed under a http://creativecommons.org/licenses/by/4.0/.

          Comments

          Comment on this article