22
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Design and evaluation of effervescent floating tablets based on hydroxyethyl cellulose and sodium alginate using pentoxifylline as a model drug

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of this work was to design and evaluate effervescent floating gastro-retentive drug delivery matrix tablets with sustained-release behavior using a binary mixture of hydroxyethyl cellulose and sodium alginate. Pentoxifylline was used as a highly water-soluble, short half-life model drug with a high density. The floating capacity, swelling, and drug release behaviors of drug-loaded matrix tablets were evaluated in 0.1 N HCl (pH 1.2) at 37°C±0.5°C. Release data were analyzed by fitting the power law model of Korsmeyer–Peppas. The effect of different formulation variables was investigated, such as wet granulation, sodium bicarbonate gas-forming agent level, and tablet hardness properties. Statistical analysis was applied by paired sample t-test and one-way analysis of variance depending on the type of data to determine significant effect of different parameters. All prepared tablets through wet granulation showed acceptable physicochemical properties and their drug release profiles followed non-Fickian diffusion. They could float on the surface of dissolution medium and sustain drug release over 24 hours. Tablets prepared with 20% w/w sodium bicarbonate at 50–54 N hardness were promising with respect to their floating lag time, floating duration, swelling ability, and sustained drug release profile.

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Floating drug delivery systems: an approach to oral controlled drug delivery via gastric retention.

          In recent years scientific and technological advancements have been made in the research and development of rate-controlled oral drug delivery systems by overcoming physiological adversities, such as short gastric residence times (GRT) and unpredictable gastric emptying times (GET). Several approaches are currently utilized in the prolongation of the GRT, including floating drug delivery systems (FDDS), also known as hydrodynamically balanced systems (HBS), swelling and expanding systems, polymeric bioadhesive systems, modified-shape systems, high-density systems, and other delayed gastric emptying devices. In this review, the current technological developments of FDDS including patented delivery systems and marketed products, and their advantages and future potential for oral controlled drug delivery are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Drug delivery to the upper small intestine window using gastroretentive technologies.

            The bioavailability of drugs with an absorption window in the upper small intestine is generally limited with conventional pharmaceutical dosage forms. The residence time of such systems and, thus, of their drug release into the stomach and upper intestine is often short. To overcome this restriction and to increase the bioavailability of these drugs, controlled drug delivery systems with a prolonged residence time in the stomach can be used. Approaches to achieving prolonged residence times of the devices in the upper part of the gastrointestinal tract include the use of bioadhesive, size-increasing, and floating drug delivery systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Novel sustained release, swellable and bioadhesive gastroretentive drug delivery system for ofloxacin.

              Oral sustained release gastroretentive dosage forms offer many advantages for drugs having absorption from upper gastrointestinal tract and improve the bioavailability of medications that are characterized by a narrow absorption window. A new gastroretentive sustained release delivery system was developed with floating, swellable and bioadhesive properties. All these properties were optimized and evaluated. Various release retarding polymers like psyllium husk, HPMC K100M and a swelling agent, crosspovidone in combinations were tried and optimized to get the release profile for 24 h. Formulations were evaluated for in vitro drug release profile, swelling characteristics and in vitro bioadhesion property. The in vitro drug release followed Higuchi kinetics and the drug release mechanism was found to be of anomalous or non-Fickian type. For the developed formulation, the value of n was found to be 0.5766 while for the marketed formulation the value was 0.5718 indicating the anomalous transport. The high water uptake leading to higher swelling of the tablet supported the anomalous release mechanism of ofloxacin. The similarity factor f2 was found to be 91.12 for the developed formulation indicating the release was similar to that of the marketed formulation (Zanocin OD). The swelling properties were increased with increasing crosspovidone concentration and contributed significantly in drug release from the tablet matrix. The bioadhesive property of the developed formulation was found to be significant (P < 0.005) in combination as compared to HPMC K100M and psyllium husk alone.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2015
                31 March 2015
                : 9
                : 1843-1857
                Affiliations
                [1 ]Department of Pharmacy, Health and Well-being, University of Sunderland, Sunderland, United Kingdom
                [2 ]Faculty of Pharmacy, Applied Science University, Amman, Jordan
                Author notes
                Correspondence: Amal Ali Elkordy, Department of Pharmacy, Health and Well-being, University of Sunderland, Sunderland, Wharncliffe Street, SR1 3SD UK, Tel +44 19 1515 2576, Fax +44 19 1515 3405, Email amal.elkordy@ 123456sunderland.ac.uk
                Article
                dddt-9-1843
                10.2147/DDDT.S78717
                4386796
                81612e72-c827-400e-9ada-03348aebf608
                © 2015 Abdel Rahim et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine
                floating tablets,sodium alginate,pentoxifylline,dissolution,swelling,effervescent

                Comments

                Comment on this article