9
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Finding missing diversity from synonyms of Haplopteris (Pteridaceae)

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although taxonomists target the remote wild regions to discover new species, taxa lacking a comprehensive and modern systematic treatment may be the new hotspot for biodiversity discovery. The development of molecular systematics integrated with microscopic observation techniques has greatly improved the ability of taxonomists to identify species correctly. Vittaria centrochinensis Ching ex J.F. Cheng, regarded as a synonym of Haplopteris fudzinoi (Makino) E.H.Crane, remained hidden from the eyes of fern taxonomists for more than 20 years. Herein, we collected several population samples of V. centrochinensis by performing molecular phylogenetic analysis of five cpDNA regions ( rbcL, atpA, matK, ndhF, and trnL-trnF) and through micromophological observation of specimens which differs from H. fudzinoi by lamina width and exospores. Considering the differences in morphology, geographical range, and genetic distance between these two species, we formally recognized V. centrochinensis as an authentic species and proposed a new combination Haplopteris centrochinensis (Ching ex J.F.Cheng) Y.H.Yan, Z.Y.Wei & X.C.Zhang, comb. nov. Our findings demonstrate that several taxa in synonyms are missing, and nowadays taxonomy should also include re-evaluation of the past taxonomy.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.

          We present the latest version of the Molecular Evolutionary Genetics Analysis (Mega) software, which contains many sophisticated methods and tools for phylogenomics and phylomedicine. In this major upgrade, Mega has been optimized for use on 64-bit computing systems for analyzing larger datasets. Researchers can now explore and analyze tens of thousands of sequences in Mega The new version also provides an advanced wizard for building timetrees and includes a new functionality to automatically predict gene duplication events in gene family trees. The 64-bit Mega is made available in two interfaces: graphical and command line. The graphical user interface (GUI) is a native Microsoft Windows application that can also be used on Mac OS X. The command line Mega is available as native applications for Windows, Linux, and Mac OS X. They are intended for use in high-throughput and scripted analysis. Both versions are available from www.megasoftware.net free of charge.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies

            Large phylogenomics data sets require fast tree inference methods, especially for maximum-likelihood (ML) phylogenies. Fast programs exist, but due to inherent heuristics to find optimal trees, it is not clear whether the best tree is found. Thus, there is need for additional approaches that employ different search strategies to find ML trees and that are at the same time as fast as currently available ML programs. We show that a combination of hill-climbing approaches and a stochastic perturbation method can be time-efficiently implemented. If we allow the same CPU time as RAxML and PhyML, then our software IQ-TREE found higher likelihoods between 62.2% and 87.1% of the studied alignments, thus efficiently exploring the tree-space. If we use the IQ-TREE stopping rule, RAxML and PhyML are faster in 75.7% and 47.1% of the DNA alignments and 42.2% and 100% of the protein alignments, respectively. However, the range of obtaining higher likelihoods with IQ-TREE improves to 73.3-97.1%.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space

              Since its introduction in 2001, MrBayes has grown in popularity as a software package for Bayesian phylogenetic inference using Markov chain Monte Carlo (MCMC) methods. With this note, we announce the release of version 3.2, a major upgrade to the latest official release presented in 2003. The new version provides convergence diagnostics and allows multiple analyses to be run in parallel with convergence progress monitored on the fly. The introduction of new proposals and automatic optimization of tuning parameters has improved convergence for many problems. The new version also sports significantly faster likelihood calculations through streaming single-instruction-multiple-data extensions (SSE) and support of the BEAGLE library, allowing likelihood calculations to be delegated to graphics processing units (GPUs) on compatible hardware. Speedup factors range from around 2 with SSE code to more than 50 with BEAGLE for codon problems. Checkpointing across all models allows long runs to be completed even when an analysis is prematurely terminated. New models include relaxed clocks, dating, model averaging across time-reversible substitution models, and support for hard, negative, and partial (backbone) tree constraints. Inference of species trees from gene trees is supported by full incorporation of the Bayesian estimation of species trees (BEST) algorithms. Marginal model likelihoods for Bayes factor tests can be estimated accurately across the entire model space using the stepping stone method. The new version provides more output options than previously, including samples of ancestral states, site rates, site d N /d S rations, branch rates, and node dates. A wide range of statistics on tree parameters can also be output for visualization in FigTree and compatible software.
                Bookmark

                Author and article information

                Contributors
                Role: Writing - original draft
                Role: Writing - original draft
                Role: Writing - review and editing
                Role: Writing - review and editing
                Role: Writing - review and editing
                Journal
                PhytoKeys
                PhytoKeys
                3
                urn:lsid:arphahub.com:pub:F7FCE910-8E78-573F-9C77-7788555F8AAD
                PhytoKeys
                Pensoft Publishers
                1314-2011
                1314-2003
                2021
                27 May 2021
                : 178
                : 81-94
                Affiliations
                [1 ] Shenzhen key laboratory for Orchid Conservation and Utilization, National Orchid Conservation center of China and the Orchid Conservation & research Center of Shenzhen, Shenzhen 518114, China Shanghai Normal University Shanghai China
                [2 ] College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 201602, China National Orchid Conservation center of China and the Orchid Conservation & research Center of Shenzhen Shenzhen China
                [3 ] CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences Shanghai China
                [4 ] State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China Institute of Botany, The Chinese Academy of Sciences Beijing China
                Author notes
                Corresponding author: Yue-Hong Yan ( yan.yh@ 123456126.com )

                Academic editor: Blanca León

                Article
                67622
                10.3897/phytokeys.178.67622
                9849020
                36761040
                81621fc3-3f02-4d94-a17a-63d13c73dca6
                Zuo-Ying Wei, Zeng-Qiang Xia, Xian-Chun Zhang, Jian-Guo Cao, Yue-Hong Yan

                This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 20 April 2021
                : 06 May 2021
                Funding
                National Orchid Conservation center of China and the Orchid Conservation & research Center of Shenzhen
                Categories
                Research Article
                Monilophytes
                Taxonomy
                Cenozoic
                Asia

                Plant science & Botany
                haplopteris ,molecular phylogeny,new combination,nomenclature,pteridaceae,taxonomy

                Comments

                Comment on this article