8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The analysis of doxorubicin resistance in human breast cancer cells using antibody microarrays.

      Molecular cancer therapeutics
      Antibiotics, Antineoplastic, pharmacology, Antibodies, Blotting, Western, Breast Neoplasms, drug therapy, Doxorubicin, Drug Resistance, Neoplasm, Female, Humans, Protein Array Analysis, methods, Tumor Cells, Cultured

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Doxorubicin is considered to be the most effective agent in the treatment of breast cancer patients. Unfortunately, resistance to this agent is common, representing a major obstacle to successful treatment. The identification of novel biomarkers that are able to predict treatment response may allow therapy to be tailored to individual patients. Antibody microarrays provide a powerful new technique, enabling the global comparative analysis of many proteins simultaneously. This technology may identify a panel of proteins to discriminate between drug-resistant and drug-sensitive samples. The Panorama Cell Signaling Antibody Microarray was exploited to analyze the MDA-MB-231 breast cancer cell line and a novel derivative, which displays significant resistance to doxorubicin at clinically relevant concentrations. The microarray comprised 224 antibodies selected from a variety of pathways, including apoptotic and cell signaling pathways. A standard >/=2.0-fold cutoff value was used to determine differentially expressed proteins. A decrease in the expression of mitogen-activated protein kinase-activated monophosphotyrosine (phosphorylated extracellular signal-regulated kinase; 2.8-fold decrease), cyclin D2 (2.5-fold decrease), cytokeratin 18 (2.5-fold decrease), cyclin B1 (2.4-fold decrease), and heterogeneous nuclear ribonucleoprotein m3-m4 (2.0-fold decrease) was associated with doxorubicin resistance. Western blotting was exploited to confirm results from the antibody microarray experiment. These results suggest that antibody microarrays can be used to identify novel biomarkers and further validation may reveal mechanisms of chemotherapy resistance and identify potential therapeutic targets. [Mol Cancer Ther 2006;5(8):2115-20].

          Related collections

          Author and article information

          Comments

          Comment on this article