9
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metodología para mejorar la eficiencia en la migración y detección de células madre mesenquimales humanas en modelos murinos Translated title: Methodology to improve the efficiency in the migration and detection of mesenchymal stem cells in murine models

      editorial

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Mesenchymal Stem Cells for Regenerative Medicine

          In recent decades, the biomedical applications of mesenchymal stem cells (MSCs) have attracted increasing attention. MSCs are easily extracted from the bone marrow, fat, and synovium, and differentiate into various cell lineages according to the requirements of specific biomedical applications. As MSCs do not express significant histocompatibility complexes and immune stimulating molecules, they are not detected by immune surveillance and do not lead to graft rejection after transplantation. These properties make them competent biomedical candidates, especially in tissue engineering. We present a brief overview of MSC extraction methods and subsequent potential for differentiation, and a comprehensive overview of their preclinical and clinical applications in regenerative medicine, and discuss future challenges.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone.

            Treatment with isolated allogeneic mesenchymal cells has the potential to enhance the therapeutic effects of conventional bone marrow transplantation in patients with genetic disorders affecting mesenchymal tissues, including bone, cartilage, and muscle. To demonstrate the feasibility of mesenchymal cell therapy and to gain insight into the transplant biology of these cells, we used gene-marked, donor marrow-derived mesenchymal cells to treat six children who had undergone standard bone marrow transplantation for severe osteogenesis imperfecta. Each child received two infusions of the allogeneic cells. Five of six patients showed engraftment in one or more sites, including bone, skin, and marrow stroma, and had an acceleration of growth velocity during the first 6 mo postinfusion. This improvement ranged from 60% to 94% (median, 70%) of the predicted median values for age- and sex-matched unaffected children, compared with 0% to 40% (median, 20%) over the 6 mo immediately preceding the infusions. There was no clinically significant toxicity except for an urticarial rash in one patient just after the second infusion. Failure to detect engraftment of cells expressing the neomycin phosphotransferase marker gene suggested the potential for immune attack against therapeutic cells expressing a foreign protein. Thus, allogeneic mesenchymal cells offer feasible posttransplantation therapy for osteogenesis imperfecta and likely other disorders originating in mesenchymal precursors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Highly sensitive and specific Alu-based quantification of human cells among rodent cells

              Alu elements are primate-specific short interspersed elements (SINEs), over 1 million copies of which are present in the human genome; thus, Alu elements are useful targets for detecting human cells. However, previous Alu-based techniques for detecting human genomic DNA do not reach the theoretical limits of sensitivity and specificity. In this study, we developed a highly sensitive and specific Alu-based real-time PCR method for discriminating human cells from rodent cells, using a primer and probe set carefully designed to avoid possible cross-reactions with rodent genomes. From 100 ng of mixed human and rodent genomes, 1 fg of human genome, equivalent to 1 human cell in 100 million rodent cells, was detectable. Furthermore, in vivo mouse subrenal capsule xenotransplantation assays revealed that 10 human cells per mouse organ were detectable. In addition, after intravenous injection of human mesenchymal stem cells into NOD/SCID mice via tail vein, the biodistribution of human cells was trackable in the mouse lungs and kidneys for at least 1 week. Our findings indicate that our primer and probe set is applicable for the quantitative detection of tiny amounts of human cells, such as xenotransplanted human cancer or stem cells, in rodents.
                Bookmark

                Author and article information

                Journal
                romm
                Revista de Osteoporosis y Metabolismo Mineral
                Rev Osteoporos Metab Miner
                Sociedad Española de Investigaciones Óseas y Metabolismo Mineral (Madrid, Madrid, Spain )
                1889-836X
                2173-2345
                June 2020
                : 12
                : 2
                : 37-39
                Affiliations
                [2] orgnameInstituto de Salud Carlos III ( REDinREN-ISCIII) orgdiv1Red de Investigación Renal España
                [1] Oviedo Principado de Asturias orgnameHospital Universitario Central de Asturias orgdiv1Instituto de Investigación Sanitaria Principado de Asturias orgdiv2Unidad de Gestión Clínica de Metabolismo Óseo España
                Article
                S1889-836X2020000200001 S1889-836X(20)01200200001
                10.4321/s1889-836x2020000200001
                81820e8a-416f-4708-b45d-b21014006a67

                This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 International License.

                History
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 13, Pages: 3
                Product

                SciELO Spain

                Categories
                Editorial

                Comments

                Comment on this article