5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Elucidation of the mechanism of redox grafting of diazotated anthraquinone.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Redox grafting of aryldiazonium salts containing redox units may be used to form exceptionally thick covalently attached conducting films, even in the micrometers range, in a controlled manner on glassy carbon and gold substrates. With the objective to investigate the mechanism of this process in detail, 1-anthraquinone (AQ) redox units were immobilized on these substrates by electroreduction of 9,10-dioxo-9,10-dihydroanthracene-1-diazonium tetrafluoroborate. Electrochemical quartz crystal microbalance was employed to follow the grafting process during a cyclic voltammetric sweep by recording the frequency change. The redox grafting is shown to have two mass gain regions/phases: an irreversible one due to the addition of AQ units to the substrate/film and a reversible one due to the association of cations from the supporting electrolyte with the AQ radical anions formed during the sweeping process. Scanning electrochemical microscopy was used to study the relationship between the conductivity of the film and the charging level of the AQ redox units in the grafted film. For that purpose, approach curves were recorded at a platinum ultramicroelectrode for AQ-containing films on gold and glassy carbon surfaces using the ferro/ferricyanide redox system as redox probe. It is concluded that the film growth has its origin in electron transfer processes occurring through the layer mediated by the redox moieties embedded in the organic film.

          Related collections

          Author and article information

          Journal
          Langmuir
          Langmuir : the ACS journal of surfaces and colloids
          American Chemical Society (ACS)
          1520-5827
          0743-7463
          Jun 26 2012
          : 28
          : 25
          Affiliations
          [1 ] Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus, Denmark.
          Article
          10.1021/la301391s
          22686253
          818527da-5e2e-448b-97a1-51b3b4b9e031
          History

          Comments

          Comment on this article