6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optimization of Load Balancing and Task Scheduling in Cloud Computing Environments Using Artificial Neural Networks-Based Binary Particle Swarm Optimization (BPSO)

      Sustainability
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As more people utilize the cloud, more employment opportunities become available. With constraints such as a limited make-span, a high utilization rate of available resources, minimal execution costs, and a rapid turnaround time for scheduling, this becomes an NP-hard optimization issue. The number of solutions/combinations increases exponentially with the magnitude of the challenge, such as the number of tasks and the number of computing resources, making the task scheduling problem NP-hard. As a result, achieving the optimum scheduling of user tasks is difficult. An intelligent resource allocation system can significantly cut down the costs and waste of resources. For instance, binary particle swarm optimization (BPSO) was created to combat ineffective heuristic approaches. However, the optimal solution will not be produced if these algorithms are not paired with additional heuristic or meta-heuristic algorithms. Due to the high temporal complexity of these algorithms, they are less useful in real-world settings. For the NP problem, the binary variation of PSO is presented for workload scheduling and balancing in cloud computing. Considering the updating and optimization constraints stated in this research, our objective function determines if heterogeneous virtual machines (VMs) Phave the most significant difference in completion time. In conjunction with load balancing, we developed a method for updating the placements of particles. According to the experiment results, the proposed method surpasses existing metaheuristic and heuristic algorithms regarding work scheduling and load balancing. This level of success has been attainable because of the application of Artificial Neural Networks (ANN). ANN has demonstrated promising outcomes in resource distribution. ANN is more accurate and faster than multilayer perceptron networks at predicting targets.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: not found
          • Article: not found

          A new bio-inspired optimisation algorithm: Bird Swarm Algorithm

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Honey bee behavior inspired load balancing of tasks in cloud computing environments

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Energy-Efficient Clustering Scheme for Flying Ad-Hoc Networks Using an Optimized LEACH Protocol

              A Flying Ad-hoc network constitutes many sensor nodes with limited processing speed and storage capacity as they institute a minor battery-driven device with a limited quantity of energy. One of the primary roles of the sensor node is to store and transmit the collected information to the base station (BS). Thus, the life span of the network is the main criterion for the efficient design of the FANETS Network, as sensor nodes always have limited resources. In this paper, we present a methodology of an energy-efficient clustering algorithm for collecting and transmitting data based on the Optimized Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol. The selection of CH is grounded on the new optimized threshold function. In contrast, LEACH is a hierarchical routing protocol that randomly selects cluster head nodes in a loop and results in an increased cluster headcount, but also causes more rapid power consumption. Thus, we have to circumvent these limitations by improving the LEACH Protocol. Our proposed algorithm diminishes the energy usage for data transmission in the routing protocol, and the network’s lifetime is enhanced as it also maximizes the residual energy of nodes. The experimental results performed on MATLAB yield better performance than the existing LEACH and Centralized Low-Energy Adaptive Clustering Hierarchy Protocol in terms of energy efficiency per unit node and the packet delivery ratio with less energy utilization. In addition, the First Node Death (FND) is also meliorated when compared to the LEACH and LEACH-C protocols.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                SUSTDE
                Sustainability
                Sustainability
                MDPI AG
                2071-1050
                October 2022
                September 22 2022
                : 14
                : 19
                : 11982
                Article
                10.3390/su141911982
                819deebd-96c7-4ba8-b351-088c57812c6e
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article