39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inhibition of Candida parapsilosis Fatty Acid Synthase (Fas2) Induces Mitochondrial Cell Death in Serum

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have recently observed that a fatty acid auxotrophic mutant (fatty acid synthase, Fas2Δ/Δ) of the emerging human pathogenic yeast Candida parapsilosis dies after incubation in various media including serum. In the present study we describe the mechanism for cell death induced by serum and glucose containing media. We show that Fas2Δ/Δ yeast cells are profoundly susceptible to glucose leading us to propose that yeast cells lacking fatty acids exhibit uncontrolled metabolism in response to glucose. We demonstrate that incubation of Fas2Δ/Δ yeast cells with serum leads to cell death, and this process can be prevented with inhibition of protein or DNA synthesis, indicating that newly synthesized cellular components are detrimental to the mutant cells. Furthermore, we have found that cell death is mediated by mitochondria. Suppression of electron transport enzymes using inhibitors such as cyanide or azide prevents ROS overproduction and Fas2Δ/Δ yeast cell death. Additionally, deletion of mitochondrial DNA, which encodes several subunits for enzymes of the electron transport chain, significantly reduces serum-induced Fas2Δ/Δ yeast cell death. Therefore, our results show that serum and glucose media induce Fas2Δ/Δ yeast cell death by triggering unbalanced metabolism, which is regulated by mitochondria. To our knowledge, this is the first study to critically define a link between cytosolic fatty acid synthesis and mitochondrial function in response to serum stress in C. parapsilosis.

          Author Summary

          Candida parapsilosis is a human opportunistic pathogen associated with significant morbidity and mortality, especially in immunocompromised individuals such as premature, low-birthweight neonates. Our prior studies have indicated that C. parapsilosis effectively utilizes fatty acids/lipids for growth and virulence. We now show that inhibition of the fatty acid synthase (Fas2) results in a hypersensitivity to serum, indicating that yeast cell survival and replication in serum medium or in vivo is dependent on Fas2. Serum hypersensitivity of Fas2-inhibited yeast cells is due to mitochondrial mediated dysregulation of metabolism. Thus, we conclude that Fas2 is candidate antifungal target to combat disseminated fungal infections.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Oxygen Stress: A Regulator of Apoptosis in Yeast

          Oxygen radicals are important components of metazoan apoptosis. We have found that apoptosis can be induced in the yeast Saccharomyces cerevisiae by depletion of glutathione or by low external doses of H2O2. Cycloheximide prevents apoptotic death revealing active participation of the cell. Yeast can also be triggered into apoptosis by a mutation in CDC48 or by expression of mammalian bax. In both cases, we show oxygen radicals to accumulate in the cell, whereas radical depletion or hypoxia prevents apoptosis. These results suggest that the generation of oxygen radicals is a key event in the ancestral apoptotic pathway and offer an explanation for the mechanism of bax-induced apoptosis in the absence of any established apoptotic gene in yeast.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens.

            Fungi in the genus Malassezia are ubiquitous skin residents of humans and other warm-blooded animals. Malassezia are involved in disorders including dandruff and seborrheic dermatitis, which together affect >50% of humans. Despite the importance of Malassezia in common skin diseases, remarkably little is known at the molecular level. We describe the genome, secretory proteome, and expression of selected genes of Malassezia globosa. Further, we report a comparative survey of the genome and secretory proteome of Malassezia restricta, a close relative implicated in similar skin disorders. Adaptation to the skin environment and associated pathogenicity may be due to unique metabolic limitations and capabilities. For example, the lipid dependence of M. globosa can be explained by the apparent absence of a fatty acid synthase gene. The inability to synthesize fatty acids may be complemented by the presence of multiple secreted lipases to aid in harvesting host lipids. In addition, an abundance of genes encoding secreted hydrolases (e.g., lipases, phospholipases, aspartyl proteases, and acid sphingomyelinases) was found in the M. globosa genome. In contrast, the phylogenetically closely related plant pathogen Ustilago maydis encodes a different arsenal of extracellular hydrolases with more copies of glycosyl hydrolase genes. M. globosa shares a similar arsenal of extracellular hydrolases with the phylogenetically distant human pathogen, Candida albicans, which occupies a similar niche, indicating the importance of host-specific adaptation. The M. globosa genome sequence also revealed the presence of mating-type genes, providing an indication that Malassezia may be capable of sex.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Platensimycin is a selective FabF inhibitor with potent antibiotic properties.

              Bacterial infection remains a serious threat to human lives because of emerging resistance to existing antibiotics. Although the scientific community has avidly pursued the discovery of new antibiotics that interact with new targets, these efforts have met with limited success since the early 1960s. Here we report the discovery of platensimycin, a previously unknown class of antibiotics produced by Streptomyces platensis. Platensimycin demonstrates strong, broad-spectrum Gram-positive antibacterial activity by selectively inhibiting cellular lipid biosynthesis. We show that this anti-bacterial effect is exerted through the selective targeting of beta-ketoacyl-(acyl-carrier-protein (ACP)) synthase I/II (FabF/B) in the synthetic pathway of fatty acids. Direct binding assays show that platensimycin interacts specifically with the acyl-enzyme intermediate of the target protein, and X-ray crystallographic studies reveal that a specific conformational change that occurs on acylation must take place before the inhibitor can bind. Treatment with platensimycin eradicates Staphylococcus aureus infection in mice. Because of its unique mode of action, platensimycin shows no cross-resistance to other key antibiotic-resistant strains tested, including methicillin-resistant S. aureus, vancomycin-intermediate S. aureus and vancomycin-resistant enterococci. Platensimycin is the most potent inhibitor reported for the FabF/B condensing enzymes, and is the only inhibitor of these targets that shows broad-spectrum activity, in vivo efficacy and no observed toxicity.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                August 2012
                August 2012
                30 August 2012
                : 8
                : 8
                : e1002879
                Affiliations
                [1 ]Department of Medicine (Division of Infectious Diseases), Albert Einstein College of Medicine, New York, New York, United States of America
                [2 ]Signature Research Program in Cardiovascular & Metabolic Disorders, DUKE-NUS Graduate Medical School, Singapore
                [3 ]Laboratório de Estudos Integrados em Bioquímica Microbiana, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
                [4 ]University of Hamburg, Biocenter Klein Flottbek, Department of Molecular Phytopathology and Genetics, Hamburg, Germany
                [5 ]Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, United States of America
                University of Toronto, Canada
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: L. Nguyen. Performed the experiments: L. Nguyen, G. Cesar, G. Le. Analyzed the data: L. Nguyen, J. Nosanchuk. Contributed reagents/materials/analysis tools: J. Nosanchuk, L. Nimrichter, D. Silver. Wrote the paper: L. Nguyen.

                [¤]

                Current address: Singapore Immunological Networks, A*STAR, Singapore.

                Article
                PPATHOGENS-D-12-00472
                10.1371/journal.ppat.1002879
                3431346
                22952445
                81ac8b69-9890-4fd3-9e2d-c64fe3c7f5bb
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 22 February 2012
                : 12 July 2012
                Page count
                Pages: 14
                Funding
                The work is supported in part by an Irma T. Hirschl/Monique Weill-Caulier Trust Research Award and in part by grants from CNPq, CAPES and FAPERJ. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biochemistry
                Lipids
                Fatty Acids
                Lipid Metabolism
                Microbiology
                Mycology
                Fungal Biochemistry
                Molecular Cell Biology
                Cell Death
                Cellular Stress Responses

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article