17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic evaluation with major genes and polygenic inheritance when some animals are not genotyped using gene content multiple-trait BLUP

      research-article
      1 , , 2
      Genetics, Selection, Evolution : GSE
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In pedigreed populations with a major gene segregating for a quantitative trait, it is not clear how to use pedigree, genotype and phenotype information when some individuals are not genotyped. We propose to consider gene content at the major gene as a second trait correlated to the quantitative trait, in a gene content multiple-trait best linear unbiased prediction (GCMTBLUP) method.

          Results

          The genetic covariance between the trait and gene content at the major gene is a function of the substitution effect of the gene. This genetic covariance can be written in a multiple-trait form that accommodates any pattern of missing values for either genotype or phenotype data. Effects of major gene alleles and the genetic covariance between genotype at the major gene and the phenotype can be estimated using standard EM-REML or Gibbs sampling. Prediction of breeding values with genotypes at the major gene can use multiple-trait BLUP software. Major genes with more than two alleles can be considered by including negative covariances between gene contents at each different allele. We simulated two scenarios: a selected and an unselected trait with heritabilities of 0.05 and 0.5, respectively. In both cases, the major gene explained half the genetic variation. Competing methods used imputed gene contents derived by the method of Gengler et al. or by iterative peeling. Imputed gene contents, in contrast to GCMTBLUP, do not consider information on the quantitative trait for genotype prediction. GCMTBLUP gave unbiased estimates of the gene effect, in contrast to the other methods, with less bias and better or equal accuracy of prediction. GCMTBLUP improved estimation of genotypes in non-genotyped individuals, in particular if these individuals had own phenotype records and the trait had a high heritability. Ignoring the major gene in genetic evaluation led to serious biases and decreased prediction accuracy.

          Conclusions

          CGMTBLUP is the best linear predictor of additive genetic merit including pedigree, phenotype, and genotype information at major genes, since it considers missing genotypes. Simulations confirm that it is a simple, efficient and theoretically sound method for genetic evaluation of traits influenced by polygenic inheritance and one or several major genes.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: not found
          • Book: not found

          Introduction to Quantitative Genetics

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Markov chain Monte Carlo segregation and linkage analysis for oligogenic models.

            S E Heath (1997)
            A new method for segregation and linkage analysis, with pedigree data, is described. Reversible jump Markov chain Monte Carlo methods are used to implement a sampling scheme in which the Markov chain can jump between parameter subspaces corresponding to models with different numbers of quantitative-trait loci (QTL's). Joint estimation of QTL number, position, and effects is possible, avoiding the problems that can arise from misspecification of the number of QTL's in a linkage analysis. The method is illustrated by use of a data set simulated for the 9th Genetic Analysis Workshop; this data set had several oligogenic traits, generated by use of a 1,497-member pedigree. The mixing characteristics of the method appear to be good, and the method correctly recovers the simulated model from the test data set. The approach appears to have great potential both for robust linkage analysis and for the answering of more general questions regarding the genetic control of complex traits.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A class of Bayesian methods to combine large numbers of genotyped and non-genotyped animals for whole-genome analyses

              Background To obtain predictions that are not biased by selection, the conditional mean of the breeding values must be computed given the data that were used for selection. When single nucleotide polymorphism (SNP) effects have a normal distribution, it can be argued that single-step best linear unbiased prediction (SS-BLUP) yields a conditional mean of the breeding values. Obtaining SS-BLUP, however, requires computing the inverse of the dense matrix G of genomic relationships, which will become infeasible as the number of genotyped animals increases. Also, computing G requires the frequencies of SNP alleles in the founders, which are not available in most situations. Furthermore, SS-BLUP is expected to perform poorly relative to variable selection models such as BayesB and BayesC as marker densities increase. Methods A strategy is presented for Bayesian regression models (SSBR) that combines all available data from genotyped and non-genotyped animals, as in SS-BLUP, but accommodates a wider class of models. Our strategy uses imputed marker covariates for animals that are not genotyped, together with an appropriate residual genetic effect to accommodate deviations between true and imputed genotypes. Under normality, one formulation of SSBR yields results identical to SS-BLUP, but does not require computing G or its inverse and provides richer inferences. At present, Bayesian regression analyses are used with a few thousand genotyped individuals. However, when SSBR is applied to all animals in a breeding program, there will be a 100 to 200-fold increase in the number of animals and an associated 100 to 200-fold increase in computing time. Parallel computing strategies can be used to reduce computing time. In one such strategy, a 58-fold speedup was achieved using 120 cores. Discussion In SSBR and SS-BLUP, phenotype, genotype and pedigree information are combined in a single-step. Unlike SS-BLUP, SSBR is not limited to normally distributed marker effects; it can be used when marker effects have a t distribution, as in BayesA, or mixture distributions, as in BayesB or BayesC π. Furthermore, it has the advantage that matrix inversion is not required. We have investigated parallel computing to speedup SSBR analyses so they can be used for routine applications. Electronic supplementary material The online version of this article (doi:10.1186/1297-9686-46-50) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Contributors
                andres.legarra@toulouse.inra.fr
                zulma.vitezica@ensat.fr
                Journal
                Genet Sel Evol
                Genet. Sel. Evol
                Genetics, Selection, Evolution : GSE
                BioMed Central (London )
                0999-193X
                1297-9686
                17 November 2015
                17 November 2015
                2015
                : 47
                : 89
                Affiliations
                [1 ]ISNI 0000 0001 2169 1988, GRID grid.414548.8, , INRA, UMR 1388 GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), ; 31326 Castanet-Tolosan, France
                [2 ]Université de Toulouse, INPT, ENSAT, UMR 1388 GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), 31326 Castanet-Tolosan, France
                Article
                165
                10.1186/s12711-015-0165-x
                5518164
                26576649
                81c7b5ce-61ee-447b-b43d-227bf2127c35
                © Legarra and Vitezica. 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 21 May 2015
                : 28 October 2015
                Funding
                Funded by: INRA, SelGen metaprogram
                Award ID: X-Gen
                Award ID: EpiSel
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2015

                Genetics
                Genetics

                Comments

                Comment on this article