0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Important Metabolites in Maintaining Folate Cycle, Homocysteine, and Polyamine Metabolism Associated with Ranibizumab Treatment in Cultured Human Tenon’s Fibroblasts

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The anti-fibrotic properties of ranibizumab have been well documented. As an antagonist to vascular endothelial growth factor (VEGF), ranibizumab works by binding and neutralizing all active VEGF-A, thus limiting progressive cell growth and proliferation. Ranibizumab application in ocular diseases has shown remarkable desired effects; however, to date, its antifibrotic mechanism is not well understood. In this study, we identified metabolic changes in ranibizumab-treated human Tenon’s fibroblasts (HTFs). Cultured HTFs were treated for 48 h with 0.5 mg/mL of ranibizumab and 0.5 mg/mL control IgG antibody which serves as a negative control. Samples from each group were injected into Agilent 6520 Q-TOF liquid chromatography/mass spectrometer (LC/MS) system to establish the metabolite expression in both ranibizumab treated cells and control group. Data obtained was analyzed using Agilent Mass Hunter Qualitative Analysis software to identify the most regulated metabolite following ranibizumab treatment. At p-value < 0.01 with the cut off value of two-fold change, 31 identified metabolites were found to be significantly upregulated in ranibizumab-treated group, with six of the mostly upregulated having insignificant role in fibroblast cell cycle and wound healing regulations. Meanwhile, 121 identified metabolites that were downregulated, and seven of the mostly downregulated are significantly involved in cell cycle and proliferation. Our findings suggest that ranibizumab abrogates the tissue scarring and wound healing process by regulating the expression of metabolites associated with fibrotic activity. In particular, we found that vitamin Bs are important in maintaining normal folate cycle, nucleotide synthesis, and homocysteine and spermidine metabolism. This study provides an insight into ranibizumab’s mechanism of action in HTFs from the perspective of metabolomics.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Pegaptanib for neovascular age-related macular degeneration.

          Pegaptanib, an anti-vascular endothelial growth factor therapy, was evaluated in the treatment of neovascular age-related macular degeneration. We conducted two concurrent, prospective, randomized, double-blind, multicenter, dose-ranging, controlled clinical trials using broad entry criteria. Intravitreous injection into one eye per patient of pegaptanib (at a dose of 0.3 mg, 1.0 mg, or 3.0 mg) or sham injections were administered every 6 weeks over a period of 48 weeks. The primary end point was the proportion of patients who had lost fewer than 15 letters of visual acuity at 54 weeks. In the combined analysis of the primary end point (for a total of 1186 patients), efficacy was demonstrated, without a dose-response relationship, for all three doses of pegaptanib (P<0.001 for the comparison of 0.3 mg with sham injection; P<0.001 for the comparison of 1.0 mg with sham injection; and P=0.03 for the comparison of 3.0 mg with sham injection). In the group given pegaptanib at 0.3 mg, 70 percent of patients lost fewer than 15 letters of visual acuity, as compared with 55 percent among the controls (P<0.001). The risk of severe loss of visual acuity (loss of 30 letters or more) was reduced from 22 percent in the sham-injection group to 10 percent in the group receiving 0.3 mg of pegaptanib (P<0.001). More patients receiving pegaptanib (0.3 mg), as compared with sham injection, maintained their visual acuity or gained acuity (33 percent vs. 23 percent; P=0.003). As early as six weeks after beginning therapy with the study drug, and at all subsequent points, the mean visual acuity among patients receiving 0.3 mg of pegaptanib was better than in those receiving sham injections (P<0.002). Among the adverse events that occurred, endophthalmitis (in 1.3 percent of patients), traumatic injury to the lens (in 0.7 percent), and retinal detachment (in 0.6 percent) were the most serious and required vigilance. These events were associated with a severe loss of visual acuity in 0.1 percent of patients. Pegaptanib appears to be an effective therapy for neovascular age-related macular degeneration. Its long-term safety is not known. Copyright 2004 Massachusetts Medical Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Development of ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration.

            Angiogenesis is a key aspect of the wet form of age-related neovascular (AMD), the leading cause of blindness in the elderly population. Substantial evidence indicated that vascular endothelial growth factor (VEGF)-A is a major mediator of angiogenesis and vascular leakage in wet AMD. VEGF-A is the prototype member of a gene family that includes also PlGF, VEGF-B, VEGF-C, VEGF-D and the orf virus-encoded VEGF-E. Several isoforms of VEGF-A can be generated due to alternative mRNA splicing. Various VEGF inhibitors have been clinically developed. Among these, ranibizumab is a high affinity recombinant Fab that neutralizes all isoforms of VEGF-A. The article briefly reviews the biology of VEGF and then focuses on the path that led to clinical development of ranibizumab. The safety and efficacy of ranibizumab in the treatment of neovascular AMD have been evaluated in two large phase III, multicenter, randomized, double-masked, controlled pivotal trials in different neovascular AMD patient populations. Combined, the trial results indicate that ranibizumab results not only in a slowing down of vision loss but also in a significant proportion of patients experiencing a clinically meaningful vision gain. The visual acuity benefit over control was observed regardless of CNV lesion type. Furthermore, the benefit was associated with a low rate of serious adverse events. Ranibizumab represents a novel therapy that, for the first time, appears to have the potential to enable many AMD patients to obtain a meaningful and sustained gain of vision. On June 30 2006, ranibizumab was approved by the US Food and Drug Administration for the treatment of wet AMD.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Trabeculectomy. Preliminary report of a new method.

              J Cairns (1968)
                Bookmark

                Author and article information

                Journal
                Biomolecules
                Biomolecules
                biomolecules
                Biomolecules
                MDPI
                2218-273X
                22 June 2019
                June 2019
                : 9
                : 6
                : 243
                Affiliations
                [1 ]Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Sungai Buloh, Selangor 47000, Malaysia; sitih587@ 123456salam.uitm.edu.my (S.H.S.A.K.); skvasudevan80@ 123456gmail.com (S.V.)
                [2 ]University of Malaya Centre for Innovation and Commercialization (UMCIC), University of Malaya, Kuala Lumpur 50603, Malaysia
                [3 ]Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Sungai Buloh, Selangor 47000, Malaysia
                Author notes
                Author information
                https://orcid.org/0000-0002-1671-4839
                Article
                biomolecules-09-00243
                10.3390/biom9060243
                6627437
                31234474
                81ce40c7-cc92-4eec-a9c1-8e5d7ba6919f
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 12 May 2019
                : 18 June 2019
                Categories
                Article

                anti-vegf,ranibizumab,trabeculectomy
                anti-vegf, ranibizumab, trabeculectomy

                Comments

                Comment on this article