10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Early or late IL-10 blockade enhances Th1 and Th17 effector responses and promotes fungal clearance in mice with cryptococcal lung infection.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The potent immunoregulatory properties of IL-10 can counteract protective immune responses and, thereby, promote persistent infections, as evidenced by studies of cryptococcal lung infection in IL-10-deficient mice. To further investigate how IL-10 impairs fungal clearance, the current study used an established murine model of C57BL/6J mice infected with Cryptococcus neoformans strain 52D. Our results demonstrate that fungal persistence is associated with an early and sustained expression of IL-10 by lung leukocytes. To examine whether IL-10-mediated immune modulation occurs during the early or late phase of infection, assessments of fungal burden and immunophenotyping were performed on mice treated with anti-IL-10R-blocking Ab at 3, 6, and 9 d postinfection (dpi) (early phase) or at 15, 18, and 21 dpi (late phase). We found that both early and late IL-10 blockade significantly improved fungal clearance within the lung compared with isotype control treatment when assessed 35 dpi. Immunophenotyping identified that IL-10 blockade enhanced several critical effector mechanisms, including increased accumulation of CD4(+) T cells and B cells, but not CD8(+) T cells; specific increases in the total numbers of Th1 and Th17 cells; and increased accumulation and activation of CD11b(+) dendritic cells and exudate macrophages. Importantly, IL-10 blockade effectively abrogated dissemination of C. neoformans to the brain. Collectively, this study identifies early and late cellular and molecular mechanisms through which IL-10 impairs fungal clearance and highlights the therapeutic potential of IL-10 blockade in the treatment of fungal lung infections.

          Related collections

          Author and article information

          Journal
          J. Immunol.
          Journal of immunology (Baltimore, Md. : 1950)
          1550-6606
          0022-1767
          Oct 15 2014
          : 193
          : 8
          Affiliations
          [1 ] Research Service, Veterans Affairs Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109;
          [2 ] Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; Pulmonary Section, Medical Service, Veterans Affairs Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109.
          [3 ] Research Service, Veterans Affairs Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109.
          [4 ] Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; Pulmonary Section, Medical Service, Veterans Affairs Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109 oster@umich.edu.
          Article
          jimmunol.1400650 NIHMS621675
          10.4049/jimmunol.1400650
          4193595
          25225664
          81cf4056-deea-4367-bc12-3467461af8d0
          Copyright © 2014 by The American Association of Immunologists, Inc.
          History

          Comments

          Comment on this article