12
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quartz tuning fork-based biosensor for the direct detection of human cytomegalovirus

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: found

          Estimation of the worldwide seroprevalence of cytomegalovirus: A systematic review and meta-analysis

          Cytomegalovirus (CMV) infection does not usually produce symptoms when it causes primary infection, reinfection, or reactivation because these three types of infection are all controlled by the normal immune system. However, CMV becomes an important pathogen in individuals whose immune system is immature or compromised, such as the unborn child. Several vaccines against CMV are currently in clinical trials that aim to induce immunity in seronegative individuals and/or to boost the immunity of those with prior natural infection (seropositives). To facilitate estimation of the burden of disease and the need for vaccines that induce de novo immune responses or that boost pre-existing immunity to CMV, we conducted a systematic survey of the published literature to describe the global seroprevalence of CMV IgG antibodies. We estimated a global CMV seroprevalence of 83% (95%UI: 78-88) in the general population, 86% (95%UI: 83-89) in women of childbearing age, and 86% (95%UI: 82-89) in donors of blood or organs. For each of these three groups, the highest seroprevalence was seen in the World Health Organisation (WHO) Eastern Mediterranean region 90% (95%UI: 85-94) and the lowest in WHO European region 66% (95%UI: 56-74). These estimates of the worldwide CMV distribution will help develop national and regional burden of disease models and inform future vaccine development efforts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pathogenesis of human cytomegalovirus in the immunocompromised host

            Human cytomegalovirus (HCMV) is a herpesvirus that infects ~60% of adults in developed countries and more than 90% in developing countries. Usually, it is controlled by a vigorous immune response so that infections are asymptomatic or symptoms are mild. However, if the immune system is compromised, HCMV can replicate to high levels and cause serious end organ disease. Substantial progress is being made in understanding the natural history and pathogenesis of HCMV infection and disease in the immunocompromised host. Serial measures of viral load defined the dynamics of HCMV replication and are now used routinely to allow intervention with antiviral drugs in individual patients. They are also used as pharmacodynamic read-outs to evaluate prototype vaccines that may protect against HCMV replication and to define immune correlates of this protection. This novel information is informing the design of randomized controlled trials of new antiviral drugs and vaccines currently under evaluation. In this Review, we discuss immune responses to HCMV and countermeasures deployed by the virus, the establishment of latency and reactivation from it, exogenous reinfection with additional strains, pathogenesis, development of end organ disease, indirect effects of infection, immune correlates of control of replication, current treatment strategies and the evaluation of novel vaccine candidates. Human cytomegalovirus (HCMV) infection is ordinarily controlled by a vigorous immune response; however, HCMV can replicate to high levels and cause end organ disease when the immune system is compromised. In this Review, Griffiths and Reeves discuss HCMV pathogenesis in immunocompromised individuals and emerging strategies to treat and prevent infection and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Towards a Uniform Metrological Assessment of Grating-Based Optical Fiber Sensors: From Refractometers to Biosensors

              A metrological assessment of grating-based optical fiber sensors is proposed with the aim of providing an objective evaluation of the performance of this sensor category. Attention was focused on the most common parameters, used to describe the performance of both optical refractometers and biosensors, which encompassed sensitivity, with a distinction between volume or bulk sensitivity and surface sensitivity, resolution, response time, limit of detection, specificity (or selectivity), reusability (or regenerability) and some other parameters of generic interest, such as measurement uncertainty, accuracy, precision, stability, drift, repeatability and reproducibility. Clearly, the concepts discussed here can also be applied to any resonance-based sensor, thus providing the basis for an easier and direct performance comparison of a great number of sensors published in the literature up to now. In addition, common mistakes present in the literature made for the evaluation of sensor performance are highlighted, and lastly a uniform performance assessment is discussed and provided. Finally, some design strategies will be proposed to develop a grating-based optical fiber sensing scheme with improved performance.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Journal of King Saud University - Science
                Journal of King Saud University - Science
                Elsevier BV
                10183647
                July 2023
                July 2023
                : 35
                : 5
                : 102703
                Article
                10.1016/j.jksus.2023.102703
                81d55cd1-eb11-4600-ab0e-47a96df6f97b
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article