19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Extracting Neural Oscillation Signatures of Laser-Induced Nociception in Pain-Related Regions in Rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Previous studies have shown that multiple brain regions are involved in pain perception and pain-related neural processes by forming a functionally connected pain network. It is still unclear how these pain-related brain areas actively work together to generate the experience of pain. To get a better insight into the pain network, we implanted electrodes in four pain-related areas of rats including the anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), primary somatosensory cortex (S1) and periaqueductal gray (PAG). We analyzed the pattern of local field potential (LFP) oscillations under noxious laser stimulations and innoxious laser stimulations. A high-dimensional feature matrix was built based on the LFP characters for both experimental conditions. Generalized linear models (GLMs) were trained to classify recorded LFPs under noxious vs. innoxious condition. We found a general power decrease in α and β bands and power increase in γ band in the recorded areas under noxious condition. After noxious laser stimulation, there was a consistent change in LFP power and correlation in all four brain areas among all 13 rats. With GLM classifiers, noxious laser trials were distinguished from innoxious laser trials with high accuracy (86%) using high-dimensional LFP features. This work provides a basis for further research to examine which aspects (e.g., sensory, motor or affective processes) of noxious stimulation should drive distinct neural activity across the pain network.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Memory, navigation and theta rhythm in the hippocampal-entorhinal system.

          Theories on the functions of the hippocampal system are based largely on two fundamental discoveries: the amnestic consequences of removing the hippocampus and associated structures in the famous patient H.M. and the observation that spiking activity of hippocampal neurons is associated with the spatial position of the rat. In the footsteps of these discoveries, many attempts were made to reconcile these seemingly disparate functions. Here we propose that mechanisms of memory and planning have evolved from mechanisms of navigation in the physical world and hypothesize that the neuronal algorithms underlying navigation in real and mental space are fundamentally the same. We review experimental data in support of this hypothesis and discuss how specific firing patterns and oscillatory dynamics in the entorhinal cortex and hippocampus can support both navigation and memory.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Klusters, NeuroScope, NDManager: a free software suite for neurophysiological data processing and visualization.

            Recent technological advances now allow for simultaneous recording of large populations of anatomically distributed neurons in behaving animals. The free software package described here was designed to help neurophysiologists process and view recorded data in an efficient and user-friendly manner. This package consists of several well-integrated applications, including NeuroScope (http://neuroscope.sourceforce.net), an advanced viewer for electrophysiological and behavioral data with limited editing capabilities, Klusters (http://klusters.sourceforge.net), a graphical cluster cutting application for manual and semi-automatic spike sorting, NDManager (GPL,see http://www.gnu.org/licenses/gpl.html), an experimental parameter and data processing manager. All of these programs are distributed under the GNU General Public License (GPL, see ), which gives its users legal permission to copy, distribute and/or modify the software. Also included are extensive user manuals and sample data, as well as source code and documentation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Two-stage model of memory trace formation: a role for "noisy" brain states.

              G Buzsáki (1988)
              Review of the normally occurring neuronal patterns of the hippocampus suggests that the two principal cell types of the hippocampus, the pyramidal neurons and granule cells, are maximally active during different behaviors. Granule cells reach their highest discharge rates during theta-concurrent exploratory activities, while population synchrony of pyramidal cells is maximum during immobility, consummatory behaviors, and slow wave sleep associated with field sharp waves. Sharp waves reflect the summed postsynaptic depolarization of large numbers of pyramidal cells in the CA1 and subiculum as a consequence of synchronous discharge of bursting CA3 pyramidal neurons. The trigger for the population burst in the CA3 region is the temporary release from subcortical tonic inhibition. An overview of the experimentally explored criteria of synaptic enhancement (intensity, frequency, and pattern of postsynaptic depolarization, calcium influx, cooperativity, threshold) suggests that these requirements may be present during sharp wave-concurrent population bursts of pyramidal cells. Experimental evidence is cited showing that (a) population bursts in CA3 may lead to long-term potentiation in their postsynaptic CA1 targets, (b) tetanizing stimuli are capable of increasing the synchrony of the sharp wave-burst, and (c) activity patterns of the neocortical input to the hippocampus determine which subgroup of CA3 neurons will trigger subsequently occurring population bursts (initiator cells). Based on the experimental evidence reviewed a formal model of memory trace formation is outlined. During exploratory (theta) behaviors the neocortical information is transmitted to the hippocampus via the fast-firing granule cells which may induce a weak and transient heterosynaptic potentiation in a subgroup of CA3 pyramidal cells. The weakly potentiated CA3 neurons will then initiate population bursts upon the termination of exploratory activity (sharp wave state). It is assumed that recurrent excitation during the population burst is strongest on those cells which initiated the population event. It is suggested that the strong excitatory drive brought about by the sharp wave-concurrent population bursts during consummatory behaviors, immobility, and slow wave sleep may be sufficient for the induction of long-term synaptic modification in the initiator neurons of the CA3 region and in their targets in CA1. In this two-stage model both exploratory (theta) and sharp wave states of the hippocampus are essential and any interference that might modify the structure of the population bursts (e.g. epileptic spikes) is detrimental to memory trace formation.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neural Circuits
                Front Neural Circuits
                Front. Neural Circuits
                Frontiers in Neural Circuits
                Frontiers Media S.A.
                1662-5110
                09 October 2017
                2017
                : 11
                : 71
                Affiliations
                [1] 1Neuroscience Research Institute, Peking University , Beijing, China
                [2] 2Department of Neurology, People’s Hospital, Peking University , Beijing, China
                [3] 3Department of Neurobiology, School of Basic Medical Sciences, Peking University , Beijing, China
                [4] 4Key for Neuroscience, Ministry of Education/National Committee of Health and Family Planning of China, Peking University , Beijing, China
                Author notes

                Edited by: Minmin Luo, Tsinghua University, China

                Reviewed by: Jeffrey C. Erlich, New York University Shanghai, China; Kuan Hong Wang, National Institute of Mental Health (NIH), United States

                *Correspondence: You Wan ywan@ 123456hsc.pku.edu.cn

                These authors have contributed equally to this work.

                Article
                10.3389/fncir.2017.00071
                5640783
                29062273
                81f5c9ff-6e40-452a-9d33-ca7067d29236
                Copyright © 2017 Li, Zhao, Ma, Cui, Yi, Guo and Wan.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 20 April 2017
                : 15 September 2017
                Page count
                Figures: 3, Tables: 1, Equations: 4, References: 43, Pages: 11, Words: 7209
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 81230023, 81571067, 81521063
                Funded by: Ministry of Science and Technology of the People’s Republic of China 10.13039/501100002855
                Award ID: 2013CB531905
                Funded by: Ministry of Education of the People’s Republic of China 10.13039/501100002338
                Award ID: “111” Project”
                Categories
                Neuroscience
                Original Research

                Neurosciences
                acute pain,electroencephalogram,neural oscillation,machine learning,pain network
                Neurosciences
                acute pain, electroencephalogram, neural oscillation, machine learning, pain network

                Comments

                Comment on this article