Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Functionalized porous silica&maghemite core-shell nanoparticles for applications in medicine: design, synthesis, and immunotoxicity

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Aim

      To determine cytotoxicity and effect of silica-coated magnetic nanoparticles (MNPs) on immune response, in particular lymphocyte proliferative activity, phagocytic activity, and leukocyte respiratory burst and in vitro production of interleukin-6 (IL-6) and 8 (IL-8), interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and granulocyte macrophage colony stimulating factor (GM-CSF).

      Methods

      Maghemite was prepared by coprecipitation of iron salts with ammonia, oxidation with NaOCl and modified by tetramethyl orthosilicate and aminosilanes. Particles were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier-transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS). Cytotoxicity and lymphocyte proliferative activity were assessed using [ 3H]-thymidine incorporation into DNA of proliferating human peripheral blood cells. Phagocytic activity and leukocyte respiratory burst were measured by flow cytometry; cytokine levels in cell supernatants were determined by ELISA.

      Results

      γ-Fe 2O 3&SiO 2-NH 2 MNPs were 13 nm in size. According to TEM, they were localized in the cell cytoplasm and extracellular space. Neither cytotoxic effect nor significant differences in T-lymphocyte and T-dependent B-cell proliferative response were found at particle concentrations 0.12-75 μg/cm 2 after 24, 48, and 72 h incubation. Significantly increased production of IL-6 and 8, and GM-CSF cytokines was observed in the cells treated with 3, 15, and 75 µg of particles/cm 2 for 48 h and stimulated with pokeweed mitogen (PHA). No significant changes in TNF-α and IFN-γ production were observed. MNPs did not affect phagocytic activity of monocytes and granulocytes when added to cells for 24 and 48 h. Phagocytic respiratory burst was significantly enhanced in the cultures exposed to 75 µg MNPs/cm 2 for 48 h.

      Conclusions

      The cytotoxicity and in vitro immunotoxicity were found to be minimal in the newly developed porous core-shell γ-Fe 2O 3&SiO 2-NH 2 magnetic nanoparticles.

      Related collections

      Most cited references 27

      • Record: found
      • Abstract: found
      • Article: not found

      Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications.

      Superparamagnetic iron oxide nanoparticles (SPION) with appropriate surface chemistry have been widely used experimentally for numerous in vivo applications such as magnetic resonance imaging contrast enhancement, tissue repair, immunoassay, detoxification of biological fluids, hyperthermia, drug delivery and in cell separation, etc. All these biomedical and bioengineering applications require that these nanoparticles have high magnetization values and size smaller than 100 nm with overall narrow particle size distribution, so that the particles have uniform physical and chemical properties. In addition, these applications need special surface coating of the magnetic particles, which has to be not only non-toxic and biocompatible but also allow a targetable delivery with particle localization in a specific area. To this end, most work in this field has been done in improving the biocompatibility of the materials, but only a few scientific investigations and developments have been carried out in improving the quality of magnetic particles, their size distribution, their shape and surface in addition to characterizing them to get a protocol for the quality control of these particles. Nature of surface coatings and their subsequent geometric arrangement on the nanoparticles determine not only the overall size of the colloid but also play a significant role in biokinetics and biodistribution of nanoparticles in the body. The types of specific coating, or derivatization, for these nanoparticles depend on the end application and should be chosen by keeping a particular application in mind, whether it be aimed at inflammation response or anti-cancer agents. Magnetic nanoparticles can bind to drugs, proteins, enzymes, antibodies, or nucleotides and can be directed to an organ, tissue, or tumour using an external magnetic field or can be heated in alternating magnetic fields for use in hyperthermia. This review discusses the synthetic chemistry, fluid stabilization and surface modification of superparamagnetic iron oxide nanoparticles, as well as their use for above biomedical applications.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        In vitro toxicity of silica nanoparticles in human lung cancer cells.

        The cytotoxicity of 15-nm and 46-nm silica nanoparticles was investigated by using crystalline silica (Min-U-Sil 5) as a positive control in cultured human bronchoalveolar carcinoma-derived cells. Exposure to 15-nm or 46-nm SiO(2) nanoparticles for 48 h at dosage levels between 10 and 100 microg/ml decreased cell viability in a dose-dependent manner. Both SiO(2) nanoparticles were more cytotoxic than Min-U-Sil 5; however, the cytotoxicities of 15-nm and 46-nm silica nanoparticles were not significantly different. The 15-nm SiO(2) nanoparticles were used to determine time-dependent cytotoxicity and oxidative stress responses. Cell viability decreased significantly as a function of both nanoparticle dosage (10-100 microg/ml) and exposure time (24 h, 48 h, and 72 h). Indicators of oxidative stress and cytotoxicity, including total reactive oxygen species (ROS), glutathione, malondialdehyde, and lactate dehydrogenase, were quantitatively assessed. Exposure to SiO(2) nanoparticles increased ROS levels and reduced glutathione levels. The increased production of malondialdehyde and lactate dehydrogenase release from the cells indicated lipid peroxidation and membrane damage. In summary, exposure to SiO(2) nanoparticles results in a dose-dependent cytotoxicity in cultural human bronchoalveolar carcinoma-derived cells that is closely correlated to increased oxidative stress.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers

          A targeted drug delivery system is the need of the hour. Guiding magnetic iron oxide nanoparticles with the help of an external magnetic field to its target is the principle behind the development of superparamagnetic iron oxide nanoparticles (SPIONs) as novel drug delivery vehicles. SPIONs are small synthetic γ-Fe2O3 (maghemite) or Fe3O4 (magnetite) particles with a core ranging between 10 nm and 100 nm in diameter. These magnetic particles are coated with certain biocompatible polymers, such as dextran or polyethylene glycol, which provide chemical handles for the conjugation of therapeutic agents and also improve their blood distribution profile. The current research on SPIONs is opening up wide horizons for their use as diagnostic agents in magnetic resonance imaging as well as for drug delivery vehicles. Delivery of anticancer drugs by coupling with functionalized SPIONs to their targeted site is one of the most pursued areas of research in the development of cancer treatment strategies. SPIONs have also demonstrated their efficiency as nonviral gene vectors that facilitate the introduction of plasmids into the nucleus at rates multifold those of routinely available standard technologies. SPION-induced hyperthermia has also been utilized for localized killing of cancerous cells. Despite their potential biomedical application, alteration in gene expression profiles, disturbance in iron homeostasis, oxidative stress, and altered cellular responses are some SPION-related toxicological aspects which require due consideration. This review provides a comprehensive understanding of SPIONs with regard to their method of preparation, their utility as drug delivery vehicles, and some concerns which need to be resolved before they can be moved from bench top to bedside.
            Bookmark

            Author and article information

            Affiliations
            [1 ]Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
            [2 ]Medical Faculty, Slovak Medical University, Bratislava, Slovakia
            [3 ]Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
            [4 ]Institute of Electrical Engineering, Slovak Academy of Sciences, Bratislava, Slovakia
            [5 ]Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Kjeller, Norway
            Author notes
            Correspondence to:
Daniel Horák
Department of Polymer Particles
Institute of Macromolecular Chemistry
Academy of Sciences of the Czech Republic
Heyrovského Sq. 2 
162 06 Prague 6, Czech Republic
 horak@ 123456imc.cas.cz
            Journal
            Croat Med J
            Croat. Med. J
            CMJ
            Croatian Medical Journal
            Croatian Medical Schools
            0353-9504
            1332-8166
            April 2016
            : 57
            : 2
            : 165-178
            27106358 4856187 CroatMedJ_57_0165 10.3325/cmj.2016.57.165
            Copyright © 2016 by the Croatian Medical Journal. All rights reserved.

            This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

            Categories
            RECOOP for Common Mechanisms of Disease

            Medicine

            Comments

            Comment on this article