10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      EEG-Based Mental Workload Neurometric to Evaluate the Impact of Different Traffic and Road Conditions in Real Driving Settings

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Car driving is considered a very complex activity, consisting of different concomitant tasks and subtasks, thus it is crucial to understand the impact of different factors, such as road complexity, traffic, dashboard devices, and external events on the driver’s behavior and performance. For this reason, in particular situations the cognitive demand experienced by the driver could be very high, inducing an excessive experienced mental workload and consequently an increasing of error commission probability. In this regard, it has been demonstrated that human error is the main cause of the 57% of road accidents and a contributing factor in most of them. In this study, 20 young subjects have been involved in a real driving experiment, performed under different traffic conditions (rush hour and not) and along different road types (main and secondary streets). Moreover, during the driving tasks different specific events, in particular a pedestrian crossing the road and a car entering the traffic flow just ahead of the experimental subject, have been acted. A Workload Index based on the Electroencephalographic (EEG), i.e., brain activity, of the drivers has been employed to investigate the impact of the different factors on the driver’s workload. Eye-Tracking (ET) technology and subjective measures have also been employed in order to have a comprehensive overview of the driver’s perceived workload and to investigate the different insights obtainable from the employed methodologies. The employment of such EEG-based Workload index confirmed the significant impact of both traffic and road types on the drivers’ behavior (increasing their workload), with the advantage of being under real settings. Also, it allowed to highlight the increased workload related to external events while driving, in particular with a significant effect during those situations when the traffic was low. Finally, the comparison between methodologies revealed the higher sensitivity of neurophysiological measures with respect to ET and subjective ones. In conclusion, such an EEG-based Workload index would allow to assess objectively the mental workload experienced by the driver, standing out as a powerful tool for research aimed to investigate drivers’ behavior and providing additional and complementary insights with respect to traditional methodologies employed within road safety research.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis.

          Evidence is presented that EEG oscillations in the alpha and theta band reflect cognitive and memory performance in particular. Good performance is related to two types of EEG phenomena (i) a tonic increase in alpha but a decrease in theta power, and (ii) a large phasic (event-related) decrease in alpha but increase in theta, depending on the type of memory demands. Because alpha frequency shows large interindividual differences which are related to age and memory performance, this double dissociation between alpha vs. theta and tonic vs. phasic changes can be observed only if fixed frequency bands are abandoned. It is suggested to adjust the frequency windows of alpha and theta for each subject by using individual alpha frequency as an anchor point. Based on this procedure, a consistent interpretation of a variety of findings is made possible. As an example, in a similar way as brain volume does, upper alpha power increases (but theta power decreases) from early childhood to adulthood, whereas the opposite holds true for the late part of the lifespan. Alpha power is lowered and theta power enhanced in subjects with a variety of different neurological disorders. Furthermore, after sustained wakefulness and during the transition from waking to sleeping when the ability to respond to external stimuli ceases, upper alpha power decreases, whereas theta increases. Event-related changes indicate that the extent of upper alpha desynchronization is positively correlated with (semantic) long-term memory performance, whereas theta synchronization is positively correlated with the ability to encode new information. The reviewed findings are interpreted on the basis of brain oscillations. It is suggested that the encoding of new information is reflected by theta oscillations in hippocampo-cortical feedback loops, whereas search and retrieval processes in (semantic) long-term memory are reflected by upper alpha oscillations in thalamo-cortical feedback loops. Copyright 1999 Elsevier Science B.V.
            Bookmark
            • Record: found
            • Abstract: not found
            • Book Chapter: not found

            Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Compensatory control in the regulation of human performance under stress and high workload; a cognitive-energetical framework.

              This paper presents a cognitive-energetical framework for the analysis of effects of stress and high workload on human performance. Following Kahneman's (1973) model, regulation of goals and actions is assumed to require the operation of a compensatory control mechanism, which allocates resources dynamically. A two-level compensatory control model provides the basis for a mechanism of resource allocation through an effort monitor, sensitive to changes in the level of regulatory activity, coupled with a supervisory controller which can implement different modes of performance-cost trade-off. Performance may be protected under stress by the recruitment of further resources, but only at the expense of increased subjective effort, and behavioural and physiological costs. Alternatively, stability can be achieved by reducing performance goals, without further costs. Predictions about patterns of latent decrement under performance protection are evaluated in relation to the human performance literature. Even where no primary task decrements may be detected, performance may show disruption of subsidiary activities or the use of less efficient strategies, as well as increased psychophysiological activation, strain, and fatigue after-effects. Finally, the paper discusses implications of the model for the assessment of work strain, with a focus on individual-level patterns of regulatory activity and coping.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Hum Neurosci
                Front Hum Neurosci
                Front. Hum. Neurosci.
                Frontiers in Human Neuroscience
                Frontiers Media S.A.
                1662-5161
                18 December 2018
                2018
                : 12
                : 509
                Affiliations
                [1] 1BrainSigns srl , Rome, Italy
                [2] 2IRCCS Fondazione Santa Lucia, Neuroelectrical Imaging and BCI Lab , Rome, Italy
                [3] 3Department of Molecular Medicine, Sapienza University of Rome , Rome, Italy
                [4] 4Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome , Rome, Italy
                [5] 5Deep Blue srl , Rome, Italy
                [6] 6Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), School of Engineering and Architecture, University of Bologna , Bologna, Italy
                [7] 7Department of Computer Science, Hangzhou Dianzi University , Hangzhou, China
                Author notes

                Edited by: Muthuraman Muthuraman, University Medical Center of the Johannes Gutenberg University Mainz, Germany

                Reviewed by: Edmund Wascher, Leibniz-Institut für Arbeitsforschung an der TU Dortmund (IfADo), Germany; Bahamn Nasseroleslami, Trinity College Dublin, Ireland

                Article
                10.3389/fnhum.2018.00509
                6305466
                30618686
                81ffb3c4-c5ab-401f-aea1-b08b2c5c2e8c
                Copyright © 2018 Di Flumeri, Borghini, Aricò, Sciaraffa, Lanzi, Pozzi, Vignali, Lantieri, Bichicchi, Simone and Babiloni.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 16 July 2018
                : 05 December 2018
                Page count
                Figures: 13, Tables: 1, Equations: 3, References: 73, Pages: 18, Words: 0
                Categories
                Neuroscience
                Original Research

                Neurosciences
                electroencephalography,mental workload,human factor,machine-learning,asswlda,neuroergonomics,car driving,road safety

                Comments

                Comment on this article