33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Macromolecular modeling with rosetta.

      1 ,
      Annual review of biochemistry
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Advances over the past few years have begun to enable prediction and design of macromolecular structures at near-atomic accuracy. Progress has stemmed from the development of reasonably accurate and efficiently computed all-atom potential functions as well as effective conformational sampling strategies appropriate for searching a highly rugged energy landscape, both driven by feedback from structure prediction and design tests. A unified energetic and kinematic framework in the Rosetta program allows a wide range of molecular modeling problems, from fibril structure prediction to RNA folding to the design of new protein interfaces, to be readily investigated and highlights areas for improvement. The methodology enables the creation of novel molecules with useful functions and holds promise for accelerating experimental structural inference. Emerging connections to crystallographic phasing, NMR modeling, and lower-resolution approaches are described and critically assessed.

          Related collections

          Author and article information

          Journal
          Annu Rev Biochem
          Annual review of biochemistry
          Annual Reviews
          0066-4154
          0066-4154
          2008
          : 77
          Affiliations
          [1 ] Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. rhiju@u.washington.edu
          Article
          10.1146/annurev.biochem.77.062906.171838
          18410248
          81ffeeb7-0062-462f-9e9e-66c0150e5b29
          History

          Comments

          Comment on this article