9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Biopolymer Skeleton Produced by Rhizobium radiobacter : Stoichiometric Alternation of Glycosidic and Amidic Bonds in the Lipopolysaccharide O‐Antigen

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Bacterial disease resistance in Arabidopsis through flagellin perception.

          Plants and animals recognize microbial invaders by detecting pathogen-associated molecular patterns (PAMPs) such as flagellin. However, the importance of flagellin perception for disease resistance has, until now, not been demonstrated. Here we show that treatment of plants with flg22, a peptide representing the elicitor-active epitope of flagellin, induces the expression of numerous defence-related genes and triggers resistance to pathogenic bacteria in wild-type plants, but not in plants carrying mutations in the flagellin receptor gene FLS2. This induced resistance seems to be independent of salicylic acid, jasmonic acid and ethylene signalling. Wild-type and fls2 mutants both display enhanced resistance when treated with crude bacterial extracts, even devoid of elicitor-active flagellin, indicating the existence of functional perception systems for PAMPs other than flagellin. Although fls2 mutant plants are as susceptible as the wild type when bacteria are infiltrated into leaves, they are more susceptible to the pathogen Pseudomonas syringae pv. tomato DC3000 when it is sprayed on the leaf surface. Thus, flagellin perception restricts bacterial invasion, probably at an early step, and contributes to the plant's disease resistance.
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            MAMP (microbe-associated molecular pattern) triggered immunity in plants

            Plants are sessile organisms that are under constant attack from microbes. They rely on both preformed defenses, and their innate immune system to ward of the microbial pathogens. Preformed defences include for example the cell wall and cuticle, which act as physical barriers to microbial colonization. The plant immune system is composed of surveillance systems that perceive several general microbe elicitors, which allow plants to switch from growth and development into a defense mode, rejecting most potentially harmful microbes. The elicitors are essential structures for pathogen survival and are conserved among pathogens. The conserved microbe-specific molecules, referred to as microbe- or pathogen-associated molecular patterns (MAMPs or PAMPs), are recognized by the plant innate immune systems pattern recognition receptors (PRRs). General elicitors like flagellin (Flg), elongation factor Tu (EF-Tu), peptidoglycan (PGN), lipopolysaccharides (LPS), Ax21 (Activator of XA21-mediated immunity in rice), fungal chitin, and β-glucans from oomycetes are recognized by plant surface localized PRRs. Several of the MAMPs and their corresponding PRRs have, in recent years, been identified. This review focuses on the current knowledge regarding important MAMPs from bacteria, fungi, and oomycetes, their structure, the plant PRRs that recognizes them, and how they induce MAMP-triggered immunity (MTI) in plants.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Carbohydrate structure database merged from bacterial, archaeal, plant and fungal parts

              The Carbohydrate Structure Databases (CSDBs, http://csdb.glycoscience.ru) store structural, bibliographic, taxonomic, NMR spectroscopic, and other data on natural carbohydrates and their derivatives published in the scientific literature. The CSDB project was launched in 2005 for bacterial saccharides (as BCSDB). Currently, it includes two parts, the Bacterial CSDB and the Plant&Fungal CSDB. In March 2015, these databases were merged to the single CSDB. The combined CSDB includes information on bacterial and archaeal glycans and derivatives (the coverage is close to complete), as well as on plant and fungal glycans and glycoconjugates (almost all structures published up to 1998). CSDB is regularly updated via manual expert annotation of original publications. Both newly annotated data and data imported from other databases are manually curated. The CSDB data are exportable in a number of modern formats, such as GlycoRDF. CSDB provides additional services for simulation of 1H, 13C and 2D NMR spectra of saccharides, NMR-based structure prediction, glycan-based taxon clustering and other.

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Angewandte Chemie International Edition
                Angew. Chem. Int. Ed.
                Wiley
                1433-7851
                1521-3773
                April 16 2020
                March 10 2020
                April 16 2020
                : 59
                : 16
                : 6368-6374
                Affiliations
                [1 ]Department of Chemical SciencesUniversity of Napoli Via Cintia 4 80126 Napoli Italy
                [2 ]Institute for Research on Combustion (IRC)CNR, Naples (Italy) Piazzale Vincenzo Tecchio 80 80126 Napoli Italy
                [3 ]Department of Health TechnologyTechnical University of Denmark, Kemitorvet 2800 Kgs. Lyngby Denmark
                [4 ]Department of Plant and Environmental SciencesFaculty of ScienceUniversity of Copenhagen Thorvaldsensvej 40 1871 Frederiksberg Denmark
                [5 ]Department of Agricultural SciencesUniversity of Napoli Via Università 100 80055 Portici (NA) Italy
                Article
                10.1002/anie.201914053
                8204d6d5-9101-471e-897c-e24106132a84
                © 2020

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article

                Related Documents Log