37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diagnosis and Management of the Cryopyrin-Associated Periodic Syndromes (CAPS): What Do We Know Today?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The cryopyrin-associated periodic syndromes (CAPS) are usually caused by heterozygous NLRP3 gene variants, resulting in excessive inflammasome activation with subsequent overproduction of interleukin (IL)-1β. The CAPS spectrum includes mild, moderate, and severe phenotypes. The mild phenotype is called familial cold autoinflammatory syndrome (FCAS), the moderate phenotype is also known as Muckle–Wells syndrome (MWS), and the neonatal-onset multisystem inflammatory disease (NOMID)/chronic infantile neurologic cutaneous articular syndrome (CINCA) describes the severe phenotype. The CAPS phenotypes display unspecific and unique clinical signs. Dermatologic, musculoskeletal, ocular, otologic, and neurologic disease symptoms combined with chronic systemic inflammation are characteristic. Nevertheless, making the CAPS diagnosis is challenging as several patients show a heterogeneous multi-system clinical presentation and the spectrum of genetic variants is growing. Somatic mosaicisms and low-penetrance variants lead to atypical clinical symptoms and disease courses. To avoid morbidity and to reduce mortality, early diagnosis is crucial, and a targeted anti-IL-1 therapy should be started as soon as possible. Furthermore, continuous and precise monitoring of disease activity, organ damage, and health-related quality of life is important. This review summarizes the current evidence in diagnosis and management of patients with CAPS.

          Related collections

          Most cited references123

          • Record: found
          • Abstract: found
          • Article: not found

          Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

          The American College of Medical Genetics and Genomics (ACMG) previously developed guidance for the interpretation of sequence variants. 1 In the past decade, sequencing technology has evolved rapidly with the advent of high-throughput next generation sequencing. By adopting and leveraging next generation sequencing, clinical laboratories are now performing an ever increasing catalogue of genetic testing spanning genotyping, single genes, gene panels, exomes, genomes, transcriptomes and epigenetic assays for genetic disorders. By virtue of increased complexity, this paradigm shift in genetic testing has been accompanied by new challenges in sequence interpretation. In this context, the ACMG convened a workgroup in 2013 comprised of representatives from the ACMG, the Association for Molecular Pathology (AMP) and the College of American Pathologists (CAP) to revisit and revise the standards and guidelines for the interpretation of sequence variants. The group consisted of clinical laboratory directors and clinicians. This report represents expert opinion of the workgroup with input from ACMG, AMP and CAP stakeholders. These recommendations primarily apply to the breadth of genetic tests used in clinical laboratories including genotyping, single genes, panels, exomes and genomes. This report recommends the use of specific standard terminology: ‘pathogenic’, ‘likely pathogenic’, ‘uncertain significance’, ‘likely benign’, and ‘benign’ to describe variants identified in Mendelian disorders. Moreover, this recommendation describes a process for classification of variants into these five categories based on criteria using typical types of variant evidence (e.g. population data, computational data, functional data, segregation data, etc.). Because of the increased complexity of analysis and interpretation of clinical genetic testing described in this report, the ACMG strongly recommends that clinical molecular genetic testing should be performed in a CLIA-approved laboratory with results interpreted by a board-certified clinical molecular geneticist or molecular genetic pathologist or equivalent.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases.

            The NOD-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome is a component of the inflammatory process, and its aberrant activation is pathogenic in inherited disorders such as cryopyrin-associated periodic syndrome (CAPS) and complex diseases such as multiple sclerosis, type 2 diabetes, Alzheimer's disease and atherosclerosis. We describe the development of MCC950, a potent, selective, small-molecule inhibitor of NLRP3. MCC950 blocked canonical and noncanonical NLRP3 activation at nanomolar concentrations. MCC950 specifically inhibited activation of NLRP3 but not the AIM2, NLRC4 or NLRP1 inflammasomes. MCC950 reduced interleukin-1β (IL-1β) production in vivo and attenuated the severity of experimental autoimmune encephalomyelitis (EAE), a disease model of multiple sclerosis. Furthermore, MCC950 treatment rescued neonatal lethality in a mouse model of CAPS and was active in ex vivo samples from individuals with Muckle-Wells syndrome. MCC950 is thus a potential therapeutic for NLRP3-associated syndromes, including autoinflammatory and autoimmune diseases, and a tool for further study of the NLRP3 inflammasome in human health and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta.

              Generation of Interleukin (IL)-1beta via cleavage of its proform requires the activity of caspase-1 (and caspase-11 in mice), but the mechanism involved in the activation of the proinflammatory caspases remains elusive. Here we report the identification of a caspase-activating complex that we call the inflammasome. The inflammasome comprises caspase-1, caspase-5, Pycard/Asc, and NALP1, a Pyrin domain-containing protein sharing structural homology with NODs. Using a cell-free system, we show that proinflammatory caspase activation and proIL-1beta processing is lost upon prior immunodepletion of Pycard. Moreover, expression of a dominant-negative form of Pycard in differentiated THP-1 cells blocks proIL-1beta maturation and activation of inflammatory caspases induced by LPS in vivo. Thus, the inflammasome constitutes an important arm of the innate immunity.
                Bookmark

                Author and article information

                Journal
                J Clin Med
                J Clin Med
                jcm
                Journal of Clinical Medicine
                MDPI
                2077-0383
                01 January 2021
                January 2021
                : 10
                : 1
                : 128
                Affiliations
                [1 ]Pediatric Rheumatology and Autoinflammation Reference Center Tuebingen (arcT), University Children’s Hospital Tuebingen, D-72076 Tuebingen, Germany; tatjana.welzel@ 123456ukbb.ch
                [2 ]Pediatric Pharmacology and Pharmacometrics, University Children’s Hospital Basel (UKBB), University of Basel, CH-4031 Basel, Switzerland
                Author notes
                Author information
                https://orcid.org/0000-0003-1800-0327
                https://orcid.org/0000-0002-6365-6598
                Article
                jcm-10-00128
                10.3390/jcm10010128
                7794776
                33401496
                8208ff51-fdbc-4383-840e-b6c50961bf6b
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 12 December 2020
                : 30 December 2020
                Categories
                Review

                caps,fcas,mws,cinca,nomid,hearing loss,urticarial-like rash,autoinflammatory disease,anti-il-1 treatment

                Comments

                Comment on this article