Blog
About

31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impact of diets with a high content of greaves-meal protein or carbohydrates on faecal characteristics, volatile fatty acids and faecal calprotectin concentrations in healthy dogs

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Research suggests that dietary composition influences gastrointestinal function and bacteria-derived metabolic products in the dog colon. We previously reported that dietary composition impacts upon the faecal microbiota of healthy dogs. This study aims at evaluating the dietary influences on bacteria-derived metabolic products associated with the changes in faecal microbiota that we had previously reported. We fed high-carbohydrate starch based (HCS), [crude protein: 194 g/kg, starch: 438 g/kg], high-protein greaves-meal (HPGM), [crude protein: 609 g/kg, starch: 54 g/kg] and dry commercial (DC), [crude protein: 264 g/kg, starch: 277 g/kg] diets, and studied their effects on the metabolism of the colonic microbiota and faecal calprotectin concentrations in five Beagle dogs, allocated according to the Graeco-Latin square design. Each dietary period lasted for three weeks and was crossed-over with washout periods. Food intake, body weight, and faecal consistency scores, dry matter, pH, ammonia, volatile fatty acids (VFAs), and faecal canine calprotectin concentrations were determined.

          Results

          Faecal ammonia concentrations decreased with the HCS diet. All dogs fed the HPGM diet developed diarrhoea, which led to differences in faecal consistency scores between the diets. Faecal pH was higher with the HPGM diet. Moreover, decreases in propionic and acetic acids coupled with increases in branched-chain fatty acids and valeric acid caused changes in faecal total VFAs in dogs on the HPGM diet. Faecal canine calprotectin concentration was higher with the HPGM diet and correlated positively with valeric acid concentration.

          Conclusions

          The HPGM diet led to diarrhoea in all dogs, and there were differences in faecal VFA profiles and faecal canine calprotectin concentrations.

          Related collections

          Most cited references 49

          • Record: found
          • Abstract: found
          • Article: not found

          Colonic health: fermentation and short chain fatty acids.

          Interest has been recently rekindled in short chain fatty acids (SCFAs) with the emergence of prebiotics and probiotics aimed at improving colonic and systemic health. Dietary carbohydrates, specifically resistant starches and dietary fiber, are substrates for fermentation that produce SCFAs, primarily acetate, propionate, and butyrate, as end products. The rate and amount of SCFA production depends on the species and amounts of microflora present in the colon, the substrate source and gut transit time. SCFAs are readily absorbed. Butyrate is the major energy source for colonocytes. Propionate is largely taken up by the liver. Acetate enters the peripheral circulation to be metabolized by peripheral tissues. Specific SCFA may reduce the risk of developing gastrointestinal disorders, cancer, and cardiovascular disease. Acetate is the principal SCFA in the colon, and after absorption it has been shown to increase cholesterol synthesis. However, propionate, a gluconeogenerator, has been shown to inhibit cholesterol synthesis. Therefore, substrates that can decrease the acetate: propionate ratio may reduce serum lipids and possibly cardiovascular disease risk. Butyrate has been studied for its role in nourishing the colonic mucosa and in the prevention of cancer of the colon, by promoting cell differentiation, cell-cycle arrest and apoptosis of transformed colonocytes; inhibiting the enzyme histone deacetylase and decreasing the transformation of primary to secondary bile acids as a result of colonic acidification. Therefore, a greater increase in SCFA production and potentially a greater delivery of SCFA, specifically butyrate, to the distal colon may result in a protective effect. Butyrate irrigation (enema) has also been suggested in the treatment of colitis. More human studies are now needed, especially, given the diverse nature of carbohydrate substrates and the SCFA patterns resulting from their fermentation. Short-term and long-term human studies are particularly required on SCFAs in relation to markers of cancer risk. These studies will be key to the success of dietary recommendations to maximize colonic disease prevention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of short-chain fatty acid production.

            Short-chain fatty acid (SCFA) formation by intestinal bacteria is regulated by many different host, environmental, dietary and microbiological factors. In broad terms, however, substrate availability, bacterial species composition of the microbiota and intestinal transit time largely determine the amounts and types of SCFA that are produced in healthy individuals. The majority of SCFA in the gut are derived from bacterial breakdown of complex carbohydrates, especially in the proximal bowel, but digestion of proteins and peptides makes an increasing contribution to SCFA production as food residues pass through the bowel. Bacterial hydrogen metabolism also affects the way in which SCFA are made. This outcome can be seen through the effects of inorganic electron acceptors (nitrate, sulfate) on fermentation processes, where they facilitate the formation of more oxidised SCFA such as acetate, at the expense of more reduced fatty acids, such as butyrate. Chemostat studies using pure cultures of saccharolytic gut micro-organisms demonstrate that C availability and growth rate strongly affect the outcome of fermentation. For example, acetate and formate are the major bifidobacterial fermentation products formed during growth under C limitation, whereas acetate and lactate are produced when carbohydrate is in excess. Lactate is also used as an electron sink in Clostridium perfringens and, to a lesser extent, in Bacteroides fragilis. In the latter organism acetate and succinate are the major fermentation products when substrate is abundant, whereas succinate is decarboxylated to produce propionate when C and energy sources are limiting.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Acute appendicitis is characterised by local invasion with Fusobacterium nucleatum/necrophorum.

              Acute appendicitis is a local intestinal inflammation with unclear origin. The aim was to test whether bacteria in appendicitis differ in composition to bacteria found in caecal biopsies from healthy and disease controls. We investigated sections of 70 appendices using rRNA-based fluorescence in situ hybridisation. Four hundred caecal biopsies and 400 faecal samples from patients with inflammatory bowel disease and other conditions were used as controls. A set of 73 group-specific bacterial probes was applied for the study. The mucosal surface in catarrhal appendicitis showed characteristic lesions of single epithelial cells filled with a mixed bacterial population ('pinned cells') without ulceration of the surroundings. Bacteria deeply infiltrated the tissue in suppurative appendicitis. Fusobacteria (mainly Fusobacterium nucleatum and necrophorum) were a specific component of these epithelial and submucosal infiltrates in 62% of patients with proven appendicitis. The presence of Fusobacteria in mucosal lesions correlated positively with the severity of the appendicitis and was completely absent in caecal biopsies from healthy and disease controls. Main faecal microbiota represented by Bacteroides, Eubacterium rectale (Clostridium group XIVa), Faecalibacterium prausnitzii groups and Akkermansia muciniphila were inversely related to the severity of the disease. The occurrence of other bacterial groups within mucosal lesions of acute appendicitis was not related to the severity of the appendicitis. No Fusobacteria were found in rectal swabs of patients with acute appendicitis. Local infection with Fusobacterium nucleatum/necrophorum is responsible for the majority of cases of acute appendicitis.
                Bookmark

                Author and article information

                Contributors
                Journal
                BMC Vet Res
                BMC Vet. Res
                BMC Veterinary Research
                BioMed Central
                1746-6148
                2013
                9 October 2013
                : 9
                : 201
                1746-6148-9-201
                10.1186/1746-6148-9-201
                3851871
                24107268
                Copyright © 2013 Hang et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Research Article

                Comments

                Comment on this article