19
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      New Model Systems to Illuminate Thyroid Organogenesis. Part I: An Update on the Zebrafish Toolbox

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Thyroid dysgenesis (TD) resulting from defects during embryonic thyroid development represents a major cause of congenital hypothyroidism. The pathogenetic mechanisms of TD in human newborns, however, are still poorly understood and disease-causing genetic variants have been identified in only a small percentage of TD cases. This limited understanding of the pathogenesis of TD is partly due to a lack of knowledge on how intrinsic factors and extrinsic signalling cues orchestrate the differentiation of thyroid follicular cells and the morphogenesis of thyroid tissue. Recently, embryonic stem cells and zebrafish embryos emerged as novel model systems that allow for innovative experimental approaches in order to decipher cellular and molecular mechanisms of thyroid development and to unravel pathogenic mechanisms of TD. Zebrafish embryos offer several salient properties for studies on thyroid organogenesis including rapid and external development, optical transparency, ease of breeding, relative short generation time and amenability for genome editing. In this review, we will highlight recent advances in the zebrafish toolkit to visualize cellular dynamics of organ development and discuss specific prospects of the zebrafish model for studies on vertebrate thyroid development and human congenital thyroid diseases.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          Efficient In Vivo Genome Editing Using RNA-Guided Nucleases

          Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems have evolved in bacteria and archaea as a defense mechanism to silence foreign nucleic acids of viruses and plasmids. Recent work has shown that bacterial type II CRISPR systems can be adapted to create guide RNAs (gRNAs) capable of directing site-specific DNA cleavage by the Cas9 nuclease in vitro. Here we show that this system can function in vivo to induce targeted genetic modifications in zebrafish embryos with efficiencies comparable to those obtained using ZFNs and TALENs for the same genes. RNA-guided nucleases robustly enabled genome editing at 9 of 11 different sites tested, including two for which TALENs previously failed to induce alterations. These results demonstrate that programmable CRISPR/Cas systems provide a simple, rapid, and highly scalable method for altering genes in vivo, opening the door to using RNA-guided nucleases for genome editing in a wide range of organisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs.

            Transgenesis is an important tool for assessing gene function. In zebrafish, transgenesis has suffered from three problems: the labor of building complex expression constructs using conventional subcloning; low transgenesis efficiency, leading to mosaicism in transient transgenics and infrequent germline incorporation; and difficulty in identifying germline integrations unless using a fluorescent marker transgene. The Tol2kit system uses site-specific recombination-based cloning (multisite Gateway technology) to allow quick, modular assembly of [promoter]-[coding sequence]-[3' tag] constructs in a Tol2 transposon backbone. It includes a destination vector with a cmlc2:EGFP (enhanced green fluorescent protein) transgenesis marker and a variety of widely useful entry clones, including hsp70 and beta-actin promoters; cytoplasmic, nuclear, and membrane-localized fluorescent proteins; and internal ribosome entry sequence-driven EGFP cassettes for bicistronic expression. The Tol2kit greatly facilitates zebrafish transgenesis, simplifies the sharing of clones, and enables large-scale projects testing the functions of libraries of regulatory or coding sequences. Copyright 2007 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system.

              A simple and robust method for targeted mutagenesis in zebrafish has long been sought. Previous methods generate monoallelic mutations in the germ line of F0 animals, usually delaying homozygosity for the mutation to the F2 generation. Generation of robust biallelic mutations in the F0 would allow for phenotypic analysis directly in injected animals. Recently the type II prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) system has been adapted to serve as a targeted genome mutagenesis tool. Here we report an improved CRISPR/Cas system in zebrafish with custom guide RNAs and a zebrafish codon-optimized Cas9 protein that efficiently targeted a reporter transgene Tg(-5.1mnx1:egfp) and four endogenous loci (tyr, golden, mitfa, and ddx19). Mutagenesis rates reached 75-99%, indicating that most cells contained biallelic mutations. Recessive null-like phenotypes were observed in four of the five targeting cases, supporting high rates of biallelic gene disruption. We also observed efficient germ-line transmission of the Cas9-induced mutations. Finally, five genomic loci can be targeted simultaneously, resulting in multiple loss-of-function phenotypes in the same injected fish. This CRISPR/Cas9 system represents a highly effective and scalable gene knockout method in zebrafish and has the potential for applications in other model organisms.
                Bookmark

                Author and article information

                Journal
                Eur Thyroid J
                Eur Thyroid J
                ETJ
                European Thyroid Journal
                S. Karger AG (Allschwilerstrasse 10, P.O. Box · Postfach · Case postale, CH–4009, Basel, Switzerland · Schweiz · Suisse, Phone: +41 61 306 11 11, Fax: +41 61 306 12 34, karger@karger.ch )
                2235-0640
                2235-0802
                December 2013
                3 December 2013
                1 June 2014
                : 2
                : 4
                : 229-242
                Affiliations
                Institute of Interdisciplinary Research in Molecular Human Biology, Université Libre de Bruxelles, Brussels, Belgium
                Author notes
                *Sabine Costagliola, Institute of Interdisciplinary Research in Molecular Human Biology, Université Libre de Bruxelles, BE-1070 Brussels (Belgium), E-Mail
                Article
                etj-0002-0229
                10.1159/000357079
                3923603
                24783054
                8212562d-24a7-4f14-a0e4-338b36cc7291
                Copyright © 2013 by S. Karger AG, Basel
                History
                : 22 July 2013
                : 7 November 2013
                Page count
                Figures: 4, References: 93, Pages: 14
                Categories
                Basic Thyroidology / Review

                thyroid,development,zebrafish,embryo,transgenesis,mutagenesis,live imaging


                Comments

                Comment on this article