19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The C-terminal sequence of the large hepatitis delta antigen is variable but retains the ability to bind clathrin

      research-article
      1 , 2 , 1 , 1 , 2 ,
      Virology Journal
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Hepatitis delta virus (HDV) is a defected RNA virus and requires its encoded large antigen (LDAg) to interact with helper viral proteins (HBsAgs) during assembly. Recently, a study demonstrated a direct binding of the LDAg C-terminus from genotype I HDV to the clathrin heavy chain (CHC), which suggests that this interaction might facilitate HDV assembly. If LDAg binding to clathrin is essential to HDV life cycle, a clathrin box sequence at the C-terminus of LDAg should be conserved across all HDV. However, the C-terminal sequence of LDAg is variable among 43 HDV isolates.

          Results

          Based on the presence and location of clathrin box at the C-terminus of LDAg from 43 isolates of HDV, we classified them into three groups. Group 1 (13 isolates) and 2 (26 isolates) contain a clathrin box located at amino acids 199–203 and 206–210, respectively, as found in genotype I and genotype II. Group 3 (4 isolates) contains no clathrin box as found in genotype III. CHC binding by three different LDAg (genotype I to III) was then tested by in vivo and in vitro experiments. Transfection of plasmids which encode fusion proteins of EGFP and full-length of LDAg from three genotypes into HuH-7 cells, a human heptoma cell line, was performed. GFP-pull down assays showed that a full-length of CHC was co-precipitated by EGFP-LDI, -LDII and -LDIII but not by EGFP. Further in vitro studies showed a full-length or fragment (amino acids 1 to 107) of CHC can be pull-down by 13-amino-acid peptides of LDAg from three genotypes of HDV.

          Conclusion

          Both in vivo and in vitro studies showed that CHC can bind to various sequences of LDAg from the three major genotypes of HDV. We therefore suggest that the clathrin-LDAg interaction is essential to the HDV life-cycle and that sequences binding to clathrin are evolutionarily selected, but nonetheless show the diversity across different HDV genotypes.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Clathrin.

          Clathrin was discovered nearly 25 years ago. Since then, a large number of other proteins that participate in the process by which clathrin-coated vesicles retrieve synaptic membranes or take up endocytic receptors have been identified. The functional relationships among these disparate components remain, in many cases, obscure. High-resolution structures of parts of clathrin, determined by X-ray crystallography, and lower-resolution images of assembled coats, determined by electron cryomicroscopy, now provide the information necessary to integrate various lines of evidence and to design experiments that test specific mechanistic notions. This review summarizes and illustrates the recent structural results and outlines what is known about coated-vesicle assembly in the context of this information.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structure, sequence and expression of the hepatitis delta (delta) viral genome.

            Biochemical and electron microscopic data indicate that the human hepatitis delta viral agent contains a covalently closed circular and single-stranded RNA genome that has certain similarities with viroid-like agents from plants. The sequence of the viral genome (1,678 nucleotides) has been determined and an open reading frame within the complementary strand has been shown to encode an antigen that binds specifically to antisera from patients with chronic hepatitis delta viral infections.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of a prenylation site in delta virus large antigen.

              During replication, hepatitis delta virus (HDV) switches from production of small to large delta antigen. Both antigen isoforms have an HDV genome binding domain and are packaged into hepatitis B virus (HBV)-derived envelopes but differ at their carboxy termini. The large antigen was shown to contain a terminal CXXX box and undergo prenylation. The large, but not the small, antigen formed secreted particles when expressed singly with HBV surface antigen. Mutation of Cys211 in the CXXX box of the large antigen abolished both prenylation and particle formation, suggesting that this site is important for virion morphogenesis.
                Bookmark

                Author and article information

                Journal
                Virol J
                Virology Journal
                BioMed Central
                1743-422X
                2009
                16 March 2009
                : 6
                : 31
                Affiliations
                [1 ]Department of Microbiology, Graduate Institute of Biomedical Science, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan
                [2 ]Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan
                Article
                1743-422X-6-31
                10.1186/1743-422X-6-31
                2661055
                19284884
                821299d3-7f16-47d1-bfb6-8d3a0051d913
                Copyright © 2009 Wang et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 February 2009
                : 16 March 2009
                Categories
                Research

                Microbiology & Virology
                Microbiology & Virology

                Comments

                Comment on this article