23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      BTK: sensing pathogenic nucleic acids

      editorial
      ,
      Oncotarget
      Impact Journals LLC
      Immunology and Microbiology Section, Immune response, Immunity

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We are under constant threats from pathogens. A failure to initiate an appropriate immune response will lead to an immunocompromised state. Our innate immune system could sense foreign nucleic acids from parasites, viruses, fungi and bacteria. This is achieved through pattern recognition receptors (PRRs) on innate cells such as macrophages that recognise different pathogen-associated molecular patterns including those found on foreign nucleic acids. Viral double-stranded RNA (dsRNA) in particular are recognised by PRRs such as endosomal Toll-like receptor (TLR)-3 and cytosolic RIG-I-like receptors (RLRs), RIG-I. Long dsRNA binds to TLR3 leading to receptor dimerization and phosphorylation of two tyrosine residues in its intracellular domain, Tyr759 and Tyr858 [1]. TRIF adaptor downstream of TLR3 subsequently recruits TBK1 to activate Interferon regulatory factor (IRF) 3. PI3K is reported to bind to phosphorylated TLR3 at Tyr759 [1] and activate downstream AKT for signaling to IRF3 as well. In addition, RIP1 binds to the C-terminus of TRIF to activate NFκB signaling. Finally, MAP kinases are phosphorylated downstream of TRIF for AP-1 signaling and together with NFκb and IRF3 transcription factors, cooperatively activate Type 1 IFN production, particularly IFN-β, critical for antiviral response [2]. Since TLR3 signaling is complex, we hypothesized that more molecules could be involved. Bruton's tyrosine kinase (BTK) is critical for B cell development and mutations in BTK leads to X-linked agammaglobulinaemia (XLA) in humans and X-linked immunodeficiency in mice [3]. XLA patients were also observed to develop recurrent bacterial and viral infections suggesting a possible role for BTK in innate immunity. Indeed BTK were found to be activated by several TLRs that signal through the adaptor MyD88 [4]. TLR3 signaling is unique as it strictly uses only the TRIF adaptor, and hence presented a good system to examine if BTK plays a role in TRIF-signaling [5]. We found D-galactosamine sensitised BTK knockout mice to survive better than wildtype mice when challenged with poly(I:C). Ex vivo experiments using macrophages from wildtype and btk −/− mice stimulated with naked poly(I:C) revealed that the production of inflammatory cytokines and IFN-β were defective in the absence of BTK. To corroborate this finding, we further infected wildtype and btk −/− macrophages with dengue viruses. Consistent with prior observations of the requirement of BTK in TRIF signaling for Type 1 IFN production, dengue virus infected btk −/− macrophages were found to have defective IFN-β mRNA upregulation and unable to clear dengue virus infection. To gain insight into BTK's role in TLR3 signaling, we made mutant constructs resulting in either constitutive-active (CA) or kinase-dead (KD) forms of BTK. In over expression studies using HEK293 cells together with TLR3, we observed that active BTK phosphorylates Tyr759 residues of TLR3 [5]. Thus BTK plays a critical role in TLR signaling. DNA sensors have recently emerged as new classes of PRRs that also signal Type 1 IFN production. Some of these receptors include IFI16, DAI, LRRFIP1, DDX41 and cGAS and they recognise pathogenic dsDNA enriched in AT sequences [6]. It is now established that some of these intracellular sensors signal via the adaptor STING. In our recent study [7], we examined the possibility that BTK might have a role in STING signaling. We challenged btk −/− mice with several agents that triggered STING signaling such as dAdT, DMXAA and malaria DNA and found that the production of IFN-β was defective with all stimulants studied. We also observed not only increased susceptibility but also higher parasitemia development in BTK knockout mice challenged with plasmodium yoelii compared to wildtype controls. As malaria dsDNA is rich in AT sequences, we postulated that BTK may be required in the innate sensing of intracellular DNA. We examined further and confirmed that BTK could bind STING to activate Type 1 IFN signaling. Our biochemical and mass-spectrometry experimental approaches further uncover BTK's role in activating the DNA sensor DDX41. BTK was found to phosphorylate Tyr414 of the DDX41 helicase to activate its recognition of dsDNA and subsequent binding to STING. This further triggers STING-dependent TBK1 phosphorylation and activation of IRF3 to initiate IFN-β mRNA synthesis. In summary, we identified a critical role for BTK in innate immunity. BTK phosphorylates TLR3 and DDX41 that are important for recognizing intracellular nucleic acids including double-stranded RNA and DNA. We further speculate that BTK could activate even more innate immune receptors. Drug discovery in future could be aimed at identifying chemicals that either dampen or boost BTK's activity and therefore modulate chronic inflammation, infectious diseasesand cancer.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Bruton's tyrosine kinase phosphorylates DDX41 and activates its binding of dsDNA and STING to initiate type 1 interferon response.

          The innate immune system senses cytosolic dsDNA and bacterial cyclic dinucleotides and initiates signaling via the adaptor STING to induce type 1 interferon (IFN) response. We demonstrate here that BTK-deficient cells have impaired IFN-β production and TBK1/IRF3 activation when stimulated with agonists or infected with pathogens that activate STING signaling. BTK interacts with STING and DDX41 helicase. The kinase and SH3/SH2 interaction domains of BTK bind, respectively, the DEAD-box domain of DDX41 and transmembrane region of STING. BTK phosphorylates DDX41, and its kinase activities are critical for STING-mediated IFN-β production. We show that Tyr364 and Tyr414 of DDX41 are critical for its recognition of AT-rich DNA and binding to STING, and tandem mass spectrometry identifies Tyr414 as the BTK phosphorylation site. Modeling studies further indicate that phospho-Tyr414 strengthens DDX41's interaction with STING. Hence, BTK plays a critical role in the activation of DDX41 helicase and STING signaling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Signaling by Toll-like receptors 8 and 9 requires Bruton's tyrosine kinase.

            Toll-like receptors (TLRs) are a primary surveillance system for the detection of pathogens and are crucial to the activation of host defense. TLR7 and TLR8 sense single-stranded RNA from viruses or host ribonucleoproteins and synthetic imidazoquinolines such as R848, whereas TLR9 senses unmethylated CpG motifs in viral and bacterial DNA and in host DNA. Here we report the endogenous interaction between Brutons's tyrosine kinase (Btk) and human TLR8 and TLR9 in the monocytic cell line THP1. We also show that R848, single-stranded RNA, and CpGB-DNA activate Btk in THP1 cells as shown by phosphorylation of the tyrosine 223 residue of Btk and also by increased autokinase activity. We demonstrate that Btk is required for NFkappaB activation, participating in the pathway to increased phosphorylation of p65 on serine 536 activated by TLR8 and TLR9. Finally we demonstrate that peripheral blood mononuclear cells from patients with X-linked agammaglobulinaemia (XLA) that have dysfunctional Btk are impaired in the induction of interleukin-6 by CpGB-DNA. This study therefore establishes Btk as a key signaling molecule that interacts with and acts downstream of TLR8 and TLR9. Lack of functioning Btk in XLA patients downstream of TLR8 and TLR9 might explain the susceptibility of XLA patients to viral infections.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bruton's tyrosine kinase: cell biology, sequence conservation, mutation spectrum, siRNA modifications, and expression profiling.

              Bruton's tyrosine kinase (Btk) is encoded by the gene that when mutated causes the primary immunodeficiency disease X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (Xid) in mice. Btk is a member of the Tec family of protein tyrosine kinases (PTKs) and plays a vital, but diverse, modulatory role in many cellular processes. Mutations affecting Btk block B-lymphocyte development. Btk is conserved among species, and in this review, we present the sequence of the full-length rat Btk and find it to be analogous to the mouse Btk sequence. We have also analyzed the wealth of information compiled in the mutation database for XLA (BTKbase), representing 554 unique molecular events in 823 families and demonstrate that only selected amino acids are sensitive to replacement (P < 0.001). Although genotype-phenotype correlations have not been established in XLA, based on these findings, we hypothesize that this relationship indeed exists. Using short interfering-RNA technology, we have previously generated active constructs downregulating Btk expression. However, application of recently established guidelines to enhance or decrease the activity was not successful, demonstrating the importance of the primary sequence. We also review the outcome of expression profiling, comparing B lymphocytes from XLA-, Xid-, and Btk-knockout (KO) donors to healthy controls. Finally, in spite of a few genes differing in expression between Xid- and Btk-KO mice, in vivo competition between cells expressing either mutation shows that there is no selective survival advantage of cells carrying one genetic defect over the other. We conclusively demonstrate that for the R28C-missense mutant (Xid), there is no biologically relevant residual activity or any dominant negative effect versus other proteins.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                21 August 2015
                1 July 2015
                : 6
                : 24
                : 19948-19949
                Affiliations
                Bioprocessing Technology Institute, Singapore, Department of Microbiology, Physiology and Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore and School of Biological Science, Nanyang Technological University, Singapore
                Author notes
                Correspondence to: Kong-Peng Lam, lam_kong_peng@ 123456bti.a-star.edu.sg
                Article
                4652970
                26196947
                82190c1f-9570-4e38-b1f2-dfc38a101628
                Copyright: © 2015 Lee and Lam

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 18 June 2015
                : 28 June 2015
                Categories
                Editorial: Immunology

                Oncology & Radiotherapy
                immunology and microbiology section,immune response,immunity
                Oncology & Radiotherapy
                immunology and microbiology section, immune response, immunity

                Comments

                Comment on this article