5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Attenuation Effects of Alpha-Pinene Inhalation on Mice with Dizocilpine-Induced Psychiatric-Like Behaviour

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          α-Pinene, an organic terpene compound found in coniferous trees, is used as a safe food additive and is contained in many essential oils. Moreover, some studies have shown that α-pinene suppresses neuronal activity. In this study, we investigated whether inhalation of α-pinene suppresses dizocilpine (MK-801-) induced schizophrenia-like behavioural abnormalities in mice. Mice inhaled α-pinene 1 h before the first MK-801 injection. Thirty minutes after MK-801 injection, the open field, spontaneous locomotor activity, elevated plus maze, Y-maze, tail suspension, hot plate, and grip strength tests were conducted as behavioural experiments. Inhalation of α-pinene suppressed the activity of mice in the spontaneous locomotor activity test and although it did not suppress the MK-801-induced increased locomotor activity in the open field test, it remarkably decreased the time that the mice remained in the central area. Inhalation of α-pinene suppressed the MK-801-induced increased total distance travelled in the Y-maze test, whereas it did not alter the MK-801-induced reduced threshold of antinociception in the hot plate test. In the tail suspension and grip strength tests, there was no effect on mouse behaviour by administration of MK-801 and inhalation of α-pinene. These results suggest that α-pinene acts to reduce MK-801-induced behavioural abnormalities resembling those seen in neuropsychiatric disorders. Therefore, both medicinal plants and essential oils containing α-pinene may have potential for therapeutic treatment of schizophrenia.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: not found

          A review on therapeutic potential of Nigella sativa: A miracle herb.

          Nigella sativa (N. sativa) (Family Ranunculaceae) is a widely used medicinal plant throughout the world. It is very popular in various traditional systems of medicine like Unani and Tibb, Ayurveda and Siddha. Seeds and oil have a long history of folklore usage in various systems of medicines and food. The seeds of N. sativa have been widely used in the treatment of different diseases and ailments. In Islamic literature, it is considered as one of the greatest forms of healing medicine. It has been recommended for using on regular basis in Tibb-e-Nabwi (Prophetic Medicine). It has been widely used as antihypertensive, liver tonics, diuretics, digestive, anti-diarrheal, appetite stimulant, analgesics, anti-bacterial and in skin disorders. Extensive studies on N. sativa have been carried out by various researchers and a wide spectrum of its pharmacological actions have been explored which may include antidiabetic, anticancer, immunomodulator, analgesic, antimicrobial, anti-inflammatory, spasmolytic, bronchodilator, hepato-protective, renal protective, gastro-protective, antioxidant properties, etc. Due to its miraculous power of healing, N. sativa has got the place among the top ranked evidence based herbal medicines. This is also revealed that most of the therapeutic properties of this plant are due to the presence of thymoquinone which is major bioactive component of the essential oil. The present review is an effort to provide a detailed survey of the literature on scientific researches of pharmacognostical characteristics, chemical composition and pharmacological activities of the seeds of this plant.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia.

            Many risk genes interact synergistically to produce schizophrenia and many neurotransmitter interactions have been implicated. We have developed a circuit-based framework for understanding gene and neurotransmitter interactions. NMDAR hypofunction has been implicated in schizophrenia because NMDAR antagonists reproduce symptoms of the disease. One action of antagonists is to reduce the excitation of fast-spiking interneurons, resulting in disinhibition of pyramidal cells. Overactive pyramidal cells, notably those in the hippocampus, can drive a hyperdopaminergic state that produces psychosis. Additional aspects of interneuron function can be understood in this framework, as follows. (i) In animal models, NMDAR antagonists reduce parvalbumin and GAD67, as found in schizophrenia. These changes produce further disinhibition and can be viewed as the aberrant response of a homeostatic system having a faulty activity sensor (the NMDAR). (ii) Disinhibition decreases the power of gamma oscillation and might thereby produce negative and cognitive symptoms. (iii) Nicotine enhances the output of interneurons, and might thereby contribute to its therapeutic effect in schizophrenia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neurocognitive effects of antipsychotic medications in patients with chronic schizophrenia in the CATIE Trial.

              Neurocognitive impairment in schizophrenia is severe and is an important predictor of functional outcome. The relative effect of the second-generation (atypical) antipsychotic drugs and older agents on neurocognition has not been comprehensively determined. To compare the neurocognitive effects of several second-generation antipsychotics and a first-generation antipsychotic, perphenazine. Randomized, double-blind study of patients with schizophrenia assigned to receive treatment with olanzapine, perphenazine, quetiapine fumarate, or risperidone for up to 18 months as reported previously by Lieberman et al. Ziprasidone hydrochloride was included after its approval by the Food and Drug Administration. Fifty-seven sites participated, including academic sites and treatment mental health facilities representative of the community. From a cohort of 1460 patients in the treatment study, 817 completed neurocognitive testing immediately prior to randomization and then after 2 months of treatment. The primary outcome was change in a neurocognitive composite score after 2 months of treatment. Secondary outcomes included neurocognitive composite score change at 6 months and 18 months after continued treatment and changes in neurocognitive domains. At 2 months, treatment resulted in small neurocognitive improvements of z = 0.13 for olanzapine (P<.002), 0.25 for perphenazine (P<.001), 0.18 for quetiapine (P<.001), 0.26 for risperidone (P<.001), and 0.12 for ziprasidone (P<.06), with no significant differences between groups. Results at 6 months were similar. After 18 months of treatment, neurocognitive improvement was greater in the perphenazine group than in the olanzapine and risperidone groups. Neurocognitive improvement predicted longer time to treatment discontinuation, independently from symptom improvement, in patients treated with quetiapine or ziprasidone. After 2 months of antipsychotic treatment, all groups had a small but significant improvement in neurocognition. There were no differences between any pair of agents, including the typical drug perphenazine. These results differ from the majority of previous studies, and the possible reasons are discussed.
                Bookmark

                Author and article information

                Contributors
                Journal
                Evid Based Complement Alternat Med
                Evid Based Complement Alternat Med
                ECAM
                Evidence-based Complementary and Alternative Medicine : eCAM
                Hindawi
                1741-427X
                1741-4288
                2019
                30 July 2019
                30 July 2019
                : 2019
                : 2745453
                Affiliations
                1Department of Medical Technology, Kawasaki University of Medical Welfare, Okayama, 701-0193, Japan
                2Division of Food and Nutrition, Nakamura Gakuen University Junior College, Fukuoka, 814-0198, Japan
                3Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
                4Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
                5Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan
                Author notes

                Academic Editor: Jenny M. Wilkinson

                Author information
                https://orcid.org/0000-0003-0360-5761
                Article
                10.1155/2019/2745453
                6699265
                82198018-2ba8-4241-acc1-326ca751f495
                Copyright © 2019 Hiroshi Ueno et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 21 March 2019
                : 11 June 2019
                : 4 July 2019
                Funding
                Funded by: Towa Foundation for Food Science & Research
                Funded by: Kobayashi Magobe Memorial Medical Foundation
                Categories
                Research Article

                Complementary & Alternative medicine
                Complementary & Alternative medicine

                Comments

                Comment on this article