3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      B-Vitamin Sharing Promotes Stability of Gut Microbial Communities

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cross-feeding on intermediary and end-point metabolites plays an important role in the dynamic interactions of host-associated microbial communities. While gut microbiota possess inherent resilience to perturbation, variations in the intake of certain nutrients may lead to changes in the community composition with potential consequences on host physiology. Syntrophic relationships and mutualism at the level of major carbon and energy sources have been documented, however, relatively little is known about metabolic interactions involving micronutrients, such as B-vitamins, biosynthetic precursors of essential cofactors in the mammalian host and numerous members of the gut microbiota alike. In silico genomic reconstruction and prediction of community-wide metabolic phenotypes for eight major B-vitamins (B1, B2, B3, B5, B6, B7, B9, and B12), suggests that a significant fraction of microbial gut communities (>20% by abundance) are represented by auxotrophic species whose viability is strictly dependent on acquiring one or more B-vitamins from diet and/or prototrophic microbes via committed salvage pathways. Here, we report the stability of gut microbiota using humanized gnotobiotic mice and in vitro anaerobic fecal culture in the context of extreme variations of dietary B-vitamin supply as revealed by phylotype-to-phenotype prediction from 16S rRNA profiling and metabolomic measurements. The observed nearly unaltered relative abundance of auxotrophic species in gut communities in the face of diet or media lacking B-vitamins or containing them in great excess (∼30-fold above normal) points to a strong contribution of metabolic cooperation (B-vitamin exchange and sharing) to the stability of gut bacterial populations.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Black Queen Hypothesis: Evolution of Dependencies through Adaptive Gene Loss

          ABSTRACT Reductive genomic evolution, driven by genetic drift, is common in endosymbiotic bacteria. Genome reduction is less common in free-living organisms, but it has occurred in the numerically dominant open-ocean bacterioplankton Prochlorococcus and “Candidatus Pelagibacter,” and in these cases the reduction appears to be driven by natural selection rather than drift. Gene loss in free-living organisms may leave them dependent on cooccurring microbes for lost metabolic functions. We present the Black Queen Hypothesis (BQH), a novel theory of reductive evolution that explains how selection leads to such dependencies; its name refers to the queen of spades in the game Hearts, where the usual strategy is to avoid taking this card. Gene loss can provide a selective advantage by conserving an organism’s limiting resources, provided the gene’s function is dispensable. Many vital genetic functions are leaky, thereby unavoidably producing public goods that are available to the entire community. Such leaky functions are thus dispensable for individuals, provided they are not lost entirely from the community. The BQH predicts that the loss of a costly, leaky function is selectively favored at the individual level and will proceed until the production of public goods is just sufficient to support the equilibrium community; at that point, the benefit of any further loss would be offset by the cost. Evolution in accordance with the BQH thus generates “beneficiaries” of reduced genomic content that are dependent on leaky “helpers,” and it may explain the observed nonuniversality of prototrophy, stress resistance, and other cellular functions in the microbial world.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identifying genetic determinants needed to establish a human gut symbiont in its habitat.

            The human gut microbiota is a metabolic organ whose cellular composition is determined by a dynamic process of selection and competition. To identify microbial genes required for establishment of human symbionts in the gut, we developed an approach (insertion sequencing, or INSeq) based on a mutagenic transposon that allows capture of adjacent chromosomal DNA to define its genomic location. We used massively parallel sequencing to monitor the relative abundance of tens of thousands of transposon mutants of a saccharolytic human gut bacterium, Bacteroides thetaiotaomicron, as they established themselves in wild-type and immunodeficient gnotobiotic mice, in the presence or absence of other human gut commensals. In vivo selection transforms this population, revealing functions necessary for survival in the gut: we show how this selection is influenced by community composition and competition for nutrients (vitamin B(12)). INSeq provides a broadly applicable platform to explore microbial adaptation to the gut and other ecosystems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla.

              The adult human distal gut microbial community is typically dominated by 2 bacterial phyla (divisions), the Firmicutes and the Bacteroidetes. Little is known about the factors that govern the interactions between their members. Here, we examine the niches of representatives of both phyla in vivo. Finished genome sequences were generated from Eubacterium rectale and E. eligens, which belong to Clostridium Cluster XIVa, one of the most common gut Firmicute clades. Comparison of these and 25 other gut Firmicutes and Bacteroidetes indicated that the Firmicutes possess smaller genomes and a disproportionately smaller number of glycan-degrading enzymes. Germ-free mice were then colonized with E. rectale and/or a prominent human gut Bacteroidetes, Bacteroides thetaiotaomicron, followed by whole-genome transcriptional profiling, high-resolution proteomic analysis, and biochemical assays of microbial-microbial and microbial-host interactions. B. thetaiotaomicron adapts to E. rectale by up-regulating expression of a variety of polysaccharide utilization loci encoding numerous glycoside hydrolases, and by signaling the host to produce mucosal glycans that it, but not E. rectale, can access. E. rectale adapts to B. thetaiotaomicron by decreasing production of its glycan-degrading enzymes, increasing expression of selected amino acid and sugar transporters, and facilitating glycolysis by reducing levels of NADH, in part via generation of butyrate from acetate, which in turn is used by the gut epithelium. This simplified model of the human gut microbiota illustrates niche specialization and functional redundancy within members of its major bacterial phyla, and the importance of host glycans as a nutrient foundation that ensures ecosystem stability.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                02 July 2019
                2019
                : 10
                : 1485
                Affiliations
                [1] 1Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute , La Jolla, CA, United States
                [2] 2A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences , Moscow, Russia
                [3] 3P.G. Demidov Yaroslavl State University , Yaroslavl, Russia
                [4] 4Department of Pathology, The Johns Hopkins University School of Medicine , Baltimore, MD, United States
                Author notes

                Edited by: Siok-Fong Chin, UKM Medical Molecular Biology Institute (UMBI), Malaysia

                Reviewed by: Karoline Faust, KU Leuven, Belgium; Muriel Derrien, Nutricia Research, France

                *Correspondence: Andrei L. Osterman, osterman@ 123456sbpdiscovery.org

                These authors have contributed equally to this work

                Present address: Daniel A. Peterson, Eli Lilly and Company, Indianapolis, IN, United States

                This article was submitted to Microbial Symbioses, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2019.01485
                6615432
                31333610
                822acc4c-ad1c-47b0-a063-c6dc79f2b0bb
                Copyright © 2019 Sharma, Rodionov, Leyn, Tran, Iablokov, Ding, Peterson, Osterman and Peterson.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 08 January 2019
                : 14 June 2019
                Page count
                Figures: 7, Tables: 3, Equations: 1, References: 28, Pages: 15, Words: 0
                Funding
                Funded by: National Institutes of Health 10.13039/100000002
                Award ID: R01 GM108527-02
                Funded by: National Institutes of Health 10.13039/100000002
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                gut microbiota,b-vitamins,syntrophy,genome reconstruction,community stability

                Comments

                Comment on this article