5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Linear-Scaling Open-Shell MP2 Approach: Algorithm, Benchmarks, and Large-Scale Applications

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A linear-scaling local second-order Møller–Plesset (MP2) method is presented for high-spin open-shell molecules based on restricted open-shell (RO) reference functions. The open-shell local MP2 (LMP2) approach inherits the iteration- and redundancy-free formulation and the completely integral-direct, OpenMP-parallel, and memory and disk use economic algorithms of our closed-shell LMP2 implementation. By utilizing restricted local molecular orbitals for the demanding integral transformation step and by introducing a novel long-range spin-polarization approximation, the computational cost of RO-LMP2 approaches that of closed-shell LMP2. Extensive benchmarks were performed for reactions of radicals, ionization potentials, as well as spin-state splittings of carbenes and transition-metal complexes. Compared to the conventional MP2 reference for systems of up to 175 atoms, local errors of at most 0.1 kcal/mol were found, which are well below the intrinsic accuracy of MP2. RO-LMP2 computations are presented for challenging protein models of up to 601 atoms and 11 000 basis functions, which involve either spin states of a complexed iron ion or a highly delocalized singly occupied orbital. The corresponding runtimes of 9–15 h obtained with a single, many-core CPU demonstrate that MP2, as well as spin-scaled MP2 and double-hybrid density functional methods, become widely accessible for open-shell systems of unprecedented size and complexity.

          Related collections

          Most cited references137

          • Record: found
          • Abstract: found
          • Article: not found

          Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy.

          Gaussian basis sets of quadruple zeta valence quality for Rb-Rn are presented, as well as bases of split valence and triple zeta valence quality for H-Rn. The latter were obtained by (partly) modifying bases developed previously. A large set of more than 300 molecules representing (nearly) all elements-except lanthanides-in their common oxidation states was used to assess the quality of the bases all across the periodic table. Quantities investigated were atomization energies, dipole moments and structure parameters for Hartree-Fock, density functional theory and correlated methods, for which we had chosen Møller-Plesset perturbation theory as an example. Finally recommendations are given which type of basis set is used best for a certain level of theory and a desired quality of results.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Note on an Approximation Treatment for Many-Electron Systems

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen

                Bookmark

                Author and article information

                Journal
                J Chem Theory Comput
                J Chem Theory Comput
                ct
                jctcce
                Journal of Chemical Theory and Computation
                American Chemical Society
                1549-9618
                1549-9626
                05 April 2021
                11 May 2021
                : 17
                : 5
                : 2886-2905
                Affiliations
                [1]Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics , P.O. Box 91, H-1521 Budapest, Hungary
                Author notes
                Author information
                http://orcid.org/0000-0003-1824-8322
                http://orcid.org/0000-0003-1080-6625
                http://orcid.org/0000-0001-6692-0879
                Article
                10.1021/acs.jctc.1c00093
                8154337
                33819030
                822aef2b-a4ce-48f6-b9ad-1c56edcf1418
                © 2021 The Authors. Published by American Chemical Society

                Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 26 January 2021
                Funding
                Funded by: National Research Development and Innovation Office (NKFIH), doi NA;
                Award ID: BME-IE-BIO
                Categories
                Article
                Custom metadata
                ct1c00093
                ct1c00093

                Computational chemistry & Modeling
                Computational chemistry & Modeling

                Comments

                Comment on this article