37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Experimental Plasmodium vivax infection of key Anopheles species from the Brazilian Amazon

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Anopheles darlingi is the major malaria vector in countries located in the Amazon region. Anopheles aquasalis and Anopheles albitarsis s.l. are also proven vectors in this region. Anopheles nuneztovari s.l. and Anopheles triannulatus s.l. were found infected with Plasmodium vivax; however, their status as vectors is not yet well defined. Knowledge of susceptibility of Amazon anopheline populations to Plasmodium infection is necessary to better understand their vector capacity. Laboratory colonization of An. darlingi, the main Amazon vector, has proven to be difficult and presently An. aquasalis is the only available autonomous colony.

          Methods

          Larvae of An. darlingi, An. albitarsis s.l., An. nuneztovari s.l. and An. triannulatus s.l. were collected in the field and reared until adult stage. Adults of An. aquasalis were obtained from a well-established colony. Mosquitoes were blood-fed using a membrane-feeding device containing infected blood from malarial patients.

          The infection of the distinct Anopheles species was evaluated by the impact variance of the following parameters: (a) parasitaemia density; (b) blood serum inactivation of the infective bloodmeal; (c) influence of gametocyte number on infection rates and number of oocysts. The goal of this work was to compare the susceptibility to P. vivax of four field-collected Anopheles species with colonized An. aquasalis.

          Results

          All Anopheles species tested were susceptible to P. vivax infection, nevertheless the proportion of infected mosquitoes and the infection intensity measured by oocyst number varied significantly among species. Inactivation of the blood serum prior to mosquito feeding increased infection rates in An. darlingi and An. triannulatus s.l., but was diminished in An. albitarsis s.l. and An. aquasalis. There was a positive correlation between gametocyte density and the infection rate in all tests (Z = −8.37; p < 0.001) but varied among the mosquito species. Anopheles albitarsis s.l., An. aquasalis and An. nuneztovari s.l. had higher infection rates than An. darlingi.

          Conclusion

          All field-collected Anopheles species, as well as colonized An. aquasalis are susceptible to experimental P. vivax infections by membrane feeding assays. Anopheles darlingi, An. albitarsis s.l. and An. aquasalis are very susceptible to P. vivax infection. However, colonized An. aquasalis mosquitoes showed the higher infection intensity represented by infection rate and oocyst numbers. This study is the first to characterize experimental development of Plasmodium infections in Amazon Anopheles vectors and also to endorse that P. vivax infection of colonized An. aquasalis is a feasible laboratory model.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Vivax malaria: neglected and not benign.

          Plasmodium vivax threatens almost 40% of the world's population, resulting in 132-391 million clinical infections each year. Most of these cases originate from Southeast Asia and the Western Pacific, although a significant number also occurs in Africa and South America. Although often regarded as causing a benign and self-limiting infection, there is increasing evidence that the overall burden, economic impact, and severity of disease from P. vivax have been underestimated. Malaria control strategies have had limited success and are confounded by the lack of access to reliable diagnosis, emergence of multidrug resistant isolates, the parasite's ability to transmit early in the course of disease and relapse from dormant liver stages at varying time intervals after the initial infection. Progress in reducing the burden of disease will require improved access to reliable diagnosis and effective treatment of both blood-stage and latent parasites, and more detailed characterization of the epidemiology, morbidity, and economic impact of vivax malaria. Without these, vivax malaria will continue to be neglected by ministries of health, policy makers, researchers, and funding bodies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The dominant Anopheles vectors of human malaria in the Americas: occurrence data, distribution maps and bionomic précis

            Background An increasing knowledge of the global risk of malaria shows that the nations of the Americas have the lowest levels of Plasmodium falciparum and P. vivax endemicity worldwide, sustained, in part, by substantive integrated vector control. To help maintain and better target these efforts, knowledge of the contemporary distribution of each of the dominant vector species (DVS) of human malaria is needed, alongside a comprehensive understanding of the ecology and behaviour of each species. Results A database of contemporary occurrence data for 41 of the DVS of human malaria was compiled from intensive searches of the formal and informal literature. The results for the nine DVS of the Americas are described in detail here. Nearly 6000 occurrence records were gathered from 25 countries in the region and were complemented by a synthesis of published expert opinion range maps, refined further by a technical advisory group of medical entomologists. A suite of environmental and climate variables of suspected relevance to anopheline ecology were also compiled from open access sources. These three sets of data were then combined to produce predictive species range maps using the Boosted Regression Tree method. The predicted geographic extent for each of the following species (or species complex*) are provided: Anopheles (Nyssorhynchus) albimanus Wiedemann, 1820, An. (Nys.) albitarsis*, An. (Nys.) aquasalis Curry, 1932, An. (Nys.) darlingi Root, 1926, An. (Anopheles) freeborni Aitken, 1939, An. (Nys.) marajoara Galvão & Damasceno, 1942, An. (Nys.) nuneztovari*, An. (Ano.) pseudopunctipennis* and An. (Ano.) quadrimaculatus Say, 1824. A bionomics review summarising ecology and behaviour relevant to the control of each of these species was also compiled. Conclusions The distribution maps and bionomics review should both be considered as a starting point in an ongoing process of (i) describing the distributions of these DVS (since the opportunistic sample of occurrence data assembled can be substantially improved) and (ii) documenting their contemporary bionomics (since intervention and control pressures can act to modify behavioural traits). This is the first in a series of three articles describing the distribution of the 41 global DVS worldwide. The remaining two publications will describe those vectors found in (i) Africa, Europe and the Middle East and (ii) in Asia. All geographic distribution maps are being made available in the public domain according to the open access principles of the Malaria Atlas Project.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              New developments in Plasmodium vivax malaria: severe disease and the rise of chloroquine resistance.

              Unlike Plasmodium falciparum, Plasmodium vivax rarely causes severe disease in healthy travellers or in temperate endemic regions and has been regarded as readily treatable with chloroquine. However, in tropical areas, recent reports have highlighted severe and fatal disease associated with P. vivax infection. We review the evidence for severe disease and the spread of drug-resistant P. vivax and speculate how these maybe related. Studies from Indonesia, Papua New Guinea, Thailand and India have shown that 21-27% of patients with severe malaria have P. vivax monoinfection. The clinical spectrum of these cases is broad with an overall mortality of 0.8-1.6%. Major manifestations include severe anaemia and respiratory distress, with infants being particularly vulnerable. Most reports of severe and fatal vivax malaria come from endemic regions where populations have limited access to healthcare, a high prevalence of comorbidity and where drug-resistant P. vivax strains and partially effective primaquine regimens significantly undermine the radical cure and control of this relapsing infection. The mechanisms underlying severe disease in vivax malaria remain poorly defined. Severe, fatal and multidrug-resistant vivax malaria challenge our perception of P. vivax as a benign disease. Strategies to understand and address these phenomena are needed urgently if the global elimination of malaria is to succeed.
                Bookmark

                Author and article information

                Journal
                Malar J
                Malar. J
                Malaria Journal
                BioMed Central
                1475-2875
                2013
                21 December 2013
                : 12
                : 460
                Affiliations
                [1 ]Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz - Amazonas, Rua Teresina, 476, Adrianópolis, 69057-070 Manaus, AM, Brazil
                [2 ]Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
                [3 ]Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
                [4 ]Ministerio da Saúde, Núcleo Amazonas/Fundação de Vigilância em Saúde, Manaus, AM, Brazil
                [5 ]Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brazil
                [6 ]Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
                [7 ]Universidade do Estado do Amazonas, Manaus, AM, Brazil
                [8 ]Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz-Minas Gerais, Av. Augusto de Lima, 1715, CEP 30190-002 Belo Horizonte, MG, Brazil
                Article
                1475-2875-12-460
                10.1186/1475-2875-12-460
                3878095
                24359307
                82365720-24f8-403d-8aea-d95d23c0e5fc
                Copyright © 2013 Rios-Velásquez et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 20 October 2013
                : 17 December 2013
                Categories
                Research

                Infectious disease & Microbiology
                plasmodium vivax,anopheles,malaria,membrane feeding assay,infection rate,oocysts

                Comments

                Comment on this article