10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Evolution of alluvial mudrock forced by early land plants

      ,
      Science
      American Association for the Advancement of Science (AAAS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale crater, Mars.

          The Curiosity rover discovered fine-grained sedimentary rocks, which are inferred to represent an ancient lake and preserve evidence of an environment that would have been suited to support a martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. Carbon, hydrogen, oxygen, sulfur, nitrogen, and phosphorus were measured directly as key biogenic elements; by inference, phosphorus is assumed to have been available. The environment probably had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Sediment Accumulation Rates and the Completeness of Stratigraphic Sections

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phanerozoic trends in the global diversity of marine invertebrates.

              It has previously been thought that there was a steep Cretaceous and Cenozoic radiation of marine invertebrates. This pattern can be replicated with a new data set of fossil occurrences representing 3.5 million specimens, but only when older analytical protocols are used. Moreover, analyses that employ sampling standardization and more robust counting methods show a modest rise in diversity with no clear trend after the mid-Cretaceous. Globally, locally, and at both high and low latitudes, diversity was less than twice as high in the Neogene as in the mid-Paleozoic. The ratio of global to local richness has changed little, and a latitudinal diversity gradient was present in the early Paleozoic.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                March 01 2018
                March 01 2018
                : 359
                : 6379
                : 1022-1024
                Article
                10.1126/science.aan4660
                29496876
                823f3e92-4557-40fe-b6b3-07e330a8703a
                © 2018

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article