16
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Chromosome-Scale Assembly of the Bactrocera cucurbitae Genome Provides Insight to the Genetic Basis of white pupae

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genetic sexing strains (GSS) used in sterile insect technique (SIT) programs are textbook examples of how classical Mendelian genetics can be directly implemented in the management of agricultural insect pests. Although the foundation of traditionally developed GSS are single locus, autosomal recessive traits, their genetic basis are largely unknown. With the advent of modern genomic techniques, the genetic basis of sexing traits in GSS can now be further investigated. This study is the first of its kind to integrate traditional genetic techniques with emerging genomics to characterize a GSS using the tephritid fruit fly pest Bactrocera cucurbitae as a model. These techniques include whole-genome sequencing, the development of a mapping population and linkage map, and quantitative trait analysis. The experiment designed to map the genetic sexing trait in B. cucurbitae, white pupae ( wp), also enabled the generation of a chromosome-scale genome assembly by integrating the linkage map with the assembly. Quantitative trait loci analysis revealed SNP loci near position 42 MB on chromosome 3 to be tightly linked to wp. Gene annotation and synteny analysis show a near perfect relationship between chromosomes in B. cucurbitae and Muller elements A–E in Drosophila melanogaster. This chromosome-scale genome assembly is complete, has high contiguity, was generated using a minimal input DNA, and will be used to further characterize the genetic mechanisms underlying wp. Knowledge of the genetic basis of genetic sexing traits can be used to improve SIT in this species and expand it to other economically important Diptera.

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          TimeTree: a public knowledge-base of divergence times among organisms.

          Biologists and other scientists routinely need to know times of divergence between species and to construct phylogenies calibrated to time (timetrees). Published studies reporting time estimates from molecular data have been increasing rapidly, but the data have been largely inaccessible to the greater community of scientists because of their complexity. TimeTree brings these data together in a consistent format and uses a hierarchical structure, corresponding to the tree of life, to maximize their utility. Results are presented and summarized, allowing users to quickly determine the range and robustness of time estimates and the degree of consensus from the published literature. TimeTree is available at http://www.timetree.net
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Tree of Life Reveals Clock-Like Speciation and Diversification

            Genomic data are rapidly resolving the tree of living species calibrated to time, the timetree of life, which will provide a framework for research in diverse fields of science. Previous analyses of taxonomically restricted timetrees have found a decline in the rate of diversification in many groups of organisms, often attributed to ecological interactions among species. Here, we have synthesized a global timetree of life from 2,274 studies representing 50,632 species and examined the pattern and rate of diversification as well as the timing of speciation. We found that species diversity has been mostly expanding overall and in many smaller groups of species, and that the rate of diversification in eukaryotes has been mostly constant. We also identified, and avoided, potential biases that may have influenced previous analyses of diversification including low levels of taxon sampling, small clade size, and the inclusion of stem branches in clade analyses. We found consistency in time-to-speciation among plants and animals, ∼2 My, as measured by intervals of crown and stem species times. Together, this clock-like change at different levels suggests that speciation and diversification are processes dominated by random events and that adaptive change is largely a separate process.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              RCircos: an R package for Circos 2D track plots

              Background Circos is a Perl language based software package for visualizing similarities and differences of genome structure and positional relationships between genomic intervals. Running Circos requires extra data processing procedures to prepare plot data files and configure files from datasets, which limits its capability of integrating directly with other software tools such as R. Recently published R Bioconductor package ggbio provides a function to display genomic data in circular layout based on multiple other packages, which increases its complexity of usage and decreased the flexibility in integrating with other R pipelines. Results We implemented an R package, RCircos, using only R packages that come with R base installation. The package supports Circos 2D data track plots such as scatter, line, histogram, heatmap, tile, connectors, links, and text labels. Each plot is implemented with a specific function and input data for all functions are data frames which can be objects read from text files or generated with other R pipelines. Conclusion RCircos package provides a simple and flexible way to make Circos 2D track plots with R and could be easily integrated into other R data processing and graphic manipulation pipelines for presenting large-scale multi-sample genomic research data. It can also serve as a base tool to generate complex Circos images.
                Bookmark

                Author and article information

                Journal
                G3 (Bethesda)
                Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes|Genomes|Genetics
                Genetics Society of America
                2160-1836
                20 April 2017
                June 2017
                : 7
                : 6
                : 1927-1940
                Affiliations
                [1]United States Department of Agriculture, Agricultural Research Service Daniel K. Inouye United States Pacific Basin Agricultural Research Center, Tropical Crop and Commodity Research Unit, Hilo, Hawaii 96720
                Author notes
                [1 ]Corresponding author: United States Department of Agriculture, Agricultural Research Service Daniel K. Inouye United States Pacific Basin Agricultural Research Center, Tropical Crop and Commodity Research Unit, 64 Nowelo Street, Hilo, HI 96720. E-mail: scott.geib@ 123456ars.usda.gov
                Author information
                http://orcid.org/0000-0003-0914-6914
                http://orcid.org/0000-0002-9511-5139
                Article
                GGG_040170
                10.1534/g3.117.040170
                5473769
                28450369
                82410c2a-a6e8-4c66-a358-32786bbb98a8
                Copyright © 2017 Sim and Geib

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 03 February 2017
                : 17 April 2017
                Page count
                Figures: 9, Tables: 5, Equations: 0, References: 91, Pages: 14
                Categories
                Investigations

                Genetics
                tephritid fruit flies,genetic sexing,sterile insect technique,mendelian genetics,genomics,whole genome sequencing,chromosome assembly,qtl,linkage mapping,synteny,diptera,drosophila,genotyping

                Comments

                Comment on this article