34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      White spot syndrome virus entry is dependent on multiple endocytic routes and strongly facilitated by Cq-GABARAP in a CME-dependent manner

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          White spot syndrome virus (WSSV) is a lethal pathogen of shrimp and many other crustaceans, including crayfish. However, the molecular mechanism underlying its cellular entry remains elusive due to the lack of shrimp cell lines for viral propagation. Crayfish hematopoietic tissue (Hpt) cell culture was recently established as a good model for WSSV infection study. Here, we showed that multiple endocytic routes, including clathrin-mediated endocytosis (CME), macropinocytosis and caveolae-mediated endocytosis, were indispensably employed for the viral entry into Hpt cell of the crayfish Cherax quadricarinatus. Intriguingly, cellular autophagic activity was positively correlated with efficient viral entry, in which a key autophagy-related protein, γ-aminobutyric acid receptor-associated protein (Cq-GABARAP), that not only localized but also co-localized with WSSV on the Hpt cell membrane, strongly facilitated WSSV entry by binding to the viral envelope VP28 in a CME-dependent manner that was negatively regulated by Cq-Rac1. Furthermore, cytoskeletal components, including Cq-β-tubulin and Cq-β-actin, bound to both recombinant rCq-GABARAP and WSSV envelope proteins, which likely led to viral entry promotion via cooperation with rCq-GABARAP. Even under conditions that promoted viral entry, rCq-GABARAP significantly reduced viral replication at an early stage of infection, which was probably caused by the formation of WSSV aggregates in the cytoplasm.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation

          The clathrin-coated pit lattice is held onto the plasma membrane by an integral membrane protein that binds the clathrin AP-2 subunit with high affinity. In vitro studies have suggested that this protein controls the assembly of the pit because membrane bound AP-2 is required for lattice assembly. If so, the AP-2 binding site must be a resident protein of the coated pit and recycle with other receptors that enter cells through this pathway. Proper recycling, however, would require the switching off of AP-2 binding to allow the binding site to travel through the endocytic pathway unencumbered. Evidence for this hypothesis has been revealed by the cationic amphiphilic class of drugs (CAD), which have previously been found to inhibit receptor recycling. Incubation of human fibroblasts in the presence of these drugs caused clathrin lattices to assemble on endosomal membranes and at the same time prevented coated pit assembly at the cell surface. These effects suggest that CADs reverse an on/off switch that controls AP-2 binding to membranes. We conclude that cells have a mechanism for switching on and off AP-2 binding during the endocytic cycle.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Virus entry by macropinocytosis.

            As obligatory intracellular parasites, viruses rely on host-cell functions for most aspects of their replication cycle. This is born out during entry, when most viruses that infect vertebrate and insect cells exploit the endocytic activities of the host cell to move into the cytoplasm. Viruses belonging to vaccinia, adeno, picorna and other virus families have been reported to take advantage of macropinocytosis, an endocytic mechanism normally involved in fluid uptake. The virus particles first activate signalling pathways that trigger actin-mediated membrane ruffling and blebbing. Usually, this is followed by the formation of large vacuoles (macropinosomes) at the plasma membrane, internalization of virus particles and penetration by the viruses or their capsids into the cytosol through the limiting membrane of the macropinosomes. We review the molecular machinery involved in macropinocytosis and describe what is known about its role in virus entry.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interaction of tyrosine-based sorting signals with clathrin-associated proteins.

              Tyrosine-based signals within the cytoplasmic domain of integral membrane proteins mediate clathrin-dependent protein sorting in the endocytic and secretory pathways. A yeast two-hybrid system was used to identify proteins that bind to tyrosine-based signals. The medium chains (mu 1 and mu 2) of two clathrin-associated protein complexes (AP-1 and AP-2, respectively) specifically interacted with tyrosine-based signals of several integral membrane proteins. The interaction was confirmed by in vitro binding assays. Thus, it is likely that the medium chains serve as signal-binding components of the clathrin-dependent sorting machinery.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                07 July 2016
                2016
                : 6
                : 28694
                Affiliations
                [1 ]State Key Laboratory of Marine Environmental Science, Xiamen University , Xiamen 361102, Fujian, PR China
                [2 ]Faculty of Life Science and Biotechnology, Ningbo University , 818 Fenghua Road, Ningbo 315211, Zhejiang, PR China
                [3 ]Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology , Xiamen 361102, Fujian, PR China
                Author notes
                Article
                srep28694
                10.1038/srep28694
                4935888
                27385304
                8241f82f-1df6-47c8-9ad5-56bef1255b79
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 04 March 2016
                : 08 June 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article