Blog
About

0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Biopsy-derived adult human brain tau is phosphorylated at many of the same sites as Alzheimer's disease paired helical filament tau.

      Neuron

      metabolism, Animals, Binding Sites, Brain Chemistry, Humans, Phosphoprotein Phosphatases, Alzheimer Disease, Phosphorylation, Postmortem Changes, Protein Structure, Secondary, Rats, tau Proteins, chemistry

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tau from Alzheimer's disease (AD) paired helical filaments (PHF-tau) is phosphorylated at sites not found in autopsy-derived adult tau from normal human brains, and this suggested that PHF-tau is abnormally phosphorylated. To explore this hypothesis, we examined human adult tau from brain biopsies and demonstrated that biopsy-derived tau is phosphorylated at most sites thought to be abnormally phosphorylated in PHF-tau. These sites also were phosphorylated in autopsy-derived human fetal tau and rapidly processed rat tau. The hypophosphorylation of autopsy-derived adult human tau is due to rapid dephosphorylation postmortem, and protein phosphatases 2A (PP2A) and 2B (PP2B) in human brain biopsies dephosphorylate tau in a site-specific manner. The down-regulation of phosphatases (i.e., PP2A and PP2B) in the AD brain could lead to the generation of maximally phosphorylated PHF-tau that does not bind microtubules and aggregates as PHFs in neurofibrillary tangles and dystrophic neurites.

          Related collections

          Author and article information

          Journal
          7946342

          Comments

          Comment on this article