+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Leptin, resistin and visfatin: the missing link between endocrine metabolic disorders and immunity

      , 1 , , 2

      European Journal of Medical Research

      BioMed Central

      Adipocytokines, Obesity, Diabetes, Endocrine, Immunity

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Adipose tissue is still regarded as a principle site for lipid storage and mobilizing tissue with an important role in the control of energy homeostasis. Additionally, adipose tissue-secreted hormones such as leptin, visfatin, resistin, apelin, omentin, sex steroids, and various growth factors are now regarded as a functional part of the endocrine system. These hormones also play an important role in the immune system. Several in vitro and in vivo studies have suggested the complex role of adipocyte-derived hormones in immune system and inflammation. Adipokines mediate beneficial and detrimental effects in immunity and inflammation. Many of these adipocytokines have a physiological role in metabolism. The uncontrolled secretions of several adipocytokines were associated with the stimulation of inflammatory processes leading to metabolic disorders including obesity, atherosclerosis, insulin resistance and type 2 diabetes. Obesity leads to the dysfunction of adipocytes andcorrelated with the imbalance of adipokines levels. In obese and diabetic conditions, leptin deficiency inhibited the Jak/Stat3/PI3K and insulin pathways. In this review, ample evidence exists to support the recognition of the adipocyte’s role in various tissues and pathologies. New integral insights may add dimensions to translate any potential agents into the future clinical armamentarium of chronic endocrine metabolic and inflammatory diseases. Functional balance of both adipocytes and immune cells is important to exert their effects on endocrine metabolic disorders; furthermore, adipose tissue should be renamed not only as a functional part of the endocrine system but also as a new part of the immune system.

          Related collections

          Most cited references 131

          • Record: found
          • Abstract: found
          • Article: not found

          Visfatin: a protein secreted by visceral fat that mimics the effects of insulin.

          Fat tissue produces a variety of secreted proteins (adipocytokines) with important roles in metabolism. We isolated a newly identified adipocytokine, visfatin, that is highly enriched in the visceral fat of both humans and mice and whose expression level in plasma increases during the development of obesity. Visfatin corresponds to a protein identified previously as pre-B cell colony-enhancing factor (PBEF), a 52-kilodalton cytokine expressed in lymphocytes. Visfatin exerted insulin-mimetic effects in cultured cells and lowered plasma glucose levels in mice. Mice heterozygous for a targeted mutation in the visfatin gene had modestly higher levels of plasma glucose relative to wild-type littermates. Surprisingly, visfatin binds to and activates the insulin receptor. Further study of visfatin's physiological role may lead to new insights into glucose homeostasis and/or new therapies for metabolic disorders such as diabetes.
            • Record: found
            • Abstract: not found
            • Article: not found

            Obesity and the regulation of energy balance.

              • Record: found
              • Abstract: found
              • Article: not found

              Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme.

              Intracellular nicotinamide phosphoribosyltransferase (iNampt) is an essential enzyme in the NAD biosynthetic pathway. An extracellular form of this protein (eNampt) has been reported to act as a cytokine named PBEF or an insulin-mimetic hormone named visfatin, but its physiological relevance remains controversial. Here we show that eNampt does not exert insulin-mimetic effects in vitro or in vivo but rather exhibits robust NAD biosynthetic activity. Haplodeficiency and chemical inhibition of Nampt cause defects in NAD biosynthesis and glucose-stimulated insulin secretion in pancreatic islets in vivo and in vitro. These defects are corrected by administration of nicotinamide mononucleotide (NMN), a product of the Nampt reaction. A high concentration of NMN is present in mouse plasma, and plasma eNampt and NMN levels are reduced in Nampt heterozygous females. Our results demonstrate that Nampt-mediated systemic NAD biosynthesis is critical for beta cell function, suggesting a vital framework for the regulation of glucose homeostasis.

                Author and article information

                Eur J Med Res
                Eur. J. Med. Res
                European Journal of Medical Research
                BioMed Central
                1 May 2013
                : 18
                : 1
                : 12
                [1 ]Department of Biology, Sciences College, University of Dammam, Dammam, Saudi Arabia
                [2 ]School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 702-701, South Korea
                Copyright ©2013 AL-Suhaimi and Shehzad; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



                adipocytokines, obesity, diabetes, endocrine, immunity


                Comment on this article