78
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Selenium preserves mitochondrial function, stimulates mitochondrial biogenesis, and reduces infarct volume after focal cerebral ischemia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Mitochondrial dysfunction is one of the major events responsible for activation of neuronal cell death pathways during cerebral ischemia. Trace element selenium has been shown to protect neurons in various diseases conditions. Present study is conducted to demonstrate that selenium preserves mitochondrial functional performance, activates mitochondrial biogenesis and prevents hypoxic/ischemic cell damage.

          Results

          The study conducted on HT22 cells exposed to glutamate or hypoxia and mice subjected to 60-min focal cerebral ischemia revealed that selenium (100 nM) pretreatment (24 h) significantly attenuated cell death induced by either glutamate toxicity or hypoxia. The protective effects were associated with reduction of glutamate and hypoxia-induced ROS production and alleviation of hypoxia-induced suppression of mitochondrial respiratory complex activities. The animal studies demonstrated that selenite pretreatment (0.2 mg/kg i.p. once a day for 7 days) ameliorated cerebral infarct volume and reduced DNA oxidation. Furthermore, selenite increased protein levels of peroxisome proliferator-activated receptor-γ coactivator 1alpha (PGC-1α) and nuclear respiratory factor 1 (NRF1), two key nuclear factors that regulate mitochondrial biogenesis. Finally, selenite normalized the ischemia-induced activation of Beclin 1 and microtubule-associated protein 1 light chain 3-II (LC3-II), markers for autophagy.

          Conclusions

          These results suggest that selenium protects neurons against hypoxic/ischemic damage by reducing oxidative stress, restoring mitochondrial functional activities and stimulating mitochondrial biogenesis.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          ROS, mitochondria and the regulation of autophagy.

          Accumulation of reactive oxygen species (ROS) is an oxidative stress to which cells respond by activating various defense mechanisms or, finally, by dying. At low levels, however, ROS act as signaling molecules in various intracellular processes. Autophagy, a process by which eukaryotic cells degrade and recycle macromolecules and organelles, has an important role in the cellular response to oxidative stress. Here, we review recent reports suggesting a regulatory role for ROS of mitochondrial origin as signaling molecules in autophagy, leading, under different circumstances, to either survival or cell death. We then discuss the relationship between mitochondria and autophagosomes and propose that mitochondria have an essential role in autophagosome biogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration.

            Fluoro-Jade B, like its predecessor Fluoro-Jade, is an anionic fluorescein derivative useful for the histological staining of neurons undergoing degeneration. However, Fluoro-Jade B has an even greater specific affinity for degenerating neurons. This notion is supported by the conspicuous staining of degenerating neuronal elements with minimal background staining. This improved signal-to-noise ratio means that fine neuronal processes including distal dendrites, axons and axon terminals can be more readily detected and documented. Although the staining time and dye concentration are reduced, the method is as rapid, simple and reliable as the original Fluoro-Jade technique. Like Fluoro-Jade, Fluoro-Jade B is compatible with a number of other labeling procedures including immunofluorescent and fluorescent Nissl techniques.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of oxidants in ischemic brain damage.

              Oxygen free radicals or oxidants have been proposed to be involved in acute central nervous system injury that is produced by cerebral ischemia and reperfusion. Because of the transient nature of oxygen radicals and the technical difficulties inherent in accurately measuring their levels in the brain, experimental strategies have been focused on the use of pharmacological agents and antioxidants to seek a correlation between the exogenously supplied specific radical scavengers (ie, superoxide dismutase and catalase) and the subsequent protection of cerebral tissues from ischemic injury. However, this strategy entails problems (hemodynamic, pharmacokinetic, toxicity, blood-brain barrier permeability, etc) that may cloud the data interpretation. This mini-review will focus on the oxidant mechanisms in cerebral ischemic brain injury by using transgenic and knockout mice as an alternative approach. Transgenic and knockout mutants that either overexpress or are deficient in antioxidant enzyme/protein levels have been successfully produced. The availability of these genetically modified animals has made it possible to investigate the role of certain oxidants in ischemic brain cell damage in molecular fashion. It has been shown that an increased level of CuZn-superoxide dismutase and antiapoptotic protein Bcl-2 in the brains of transgenic mice protects neurons from ischemic/reperfusion injury, whereas a deficiency in CuZn-superoxide dismutase or mitochondrial Mn-superoxide dismutase exacerbates ischemic brain damage. Target disruption of neuronal nitric oxide synthase in mice also provides neuronal protection against permanent and transient focal cerebral ischemia. I conclude that molecular genetic approaches in modifying antioxidant levels in the brain offer a unique tool for understanding the role of oxidants in ischemic brain damage.
                Bookmark

                Author and article information

                Journal
                BMC Neurosci
                BMC Neurosci
                BMC Neuroscience
                BioMed Central
                1471-2202
                2012
                9 July 2012
                : 13
                : 79
                Affiliations
                [1 ]Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, BRITE Building 2025, 302 East Lawson Street, Durham, NC, 27707, USA
                Article
                1471-2202-13-79
                10.1186/1471-2202-13-79
                3411431
                22776356
                82528ec5-ff98-41df-afaf-640dfa0cd2af
                Copyright ©2012 Mehta et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 February 2012
                : 9 July 2012
                Categories
                Research Article

                Neurosciences
                cerebral ischemia,glutamate,respiratory complexes,hypoxia,selenium,mitochondrial biogenesis

                Comments

                Comment on this article