11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Role of interleukin-1 in stress responses : A putative neurotransmitter

      , , , ,
      Molecular Neurobiology
      Springer Nature America, Inc

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recently, the central roles of interleukin-1 (IL-1) in physical stress responses have been attracting attention. Stress responses have been characterized as central neurohormonal changes, as well as behavioral and physiological changes. Administration of IL-1 has been shown to induce effects comparable to stress-induced changes. IL-1 acts on the brain, especially the hypothalamus, to enhance release of monoamines, such as norepinephrine, dopamine, and serotonin, as well as secretion of corticotropin-releasing hormone (CRH). IL-1-induced activation of the hypothalamo-pituitary-adrenal (HPA) axis in vivo depends on secretion of CRH, an intact pituitary, and the ventral noradrenergic bundle that innervates the CRH-containing neurons in the paraventricular nucleus of the hypothalamus. Recent studies have shown that IL-1 is present within neurons in the brain, suggesting that IL-1 functions in neuronal transmission. We showed that IL-1 in the brain is involved in the stress response, and that stress-induced activation of monoamine release and the HPA axis were inhibited by IL-1 receptor antagonist (IL-1Ra) administration directly into the rat hypothalamus. IL-1Ra has been known to exert a blocking effect on IL-1 by competitively inhibiting the binding of IL-1 to IL-1 receptors. In the latter part of this review, we will attempt to describe the relationship between central nervous system diseases, including psychological disorders, and the functions of IL-1 as a putative neurotransmitter.

          Related collections

          Most cited references104

          • Record: found
          • Abstract: found
          • Article: not found

          A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes.

          Interleukin-1 beta (IL-1 beta)-converting enzyme cleaves the IL-1 beta precursor to mature IL-1 beta, an important mediator of inflammation. The identification of the enzyme as a unique cysteine protease and the design of potent peptide aldehyde inhibitors are described. Purification and cloning of the complementary DNA indicates that IL-1 beta-converting enzyme is composed of two nonidentical subunits that are derived from a single proenzyme, possibly by autoproteolysis. Selective inhibition of the enzyme in human blood monocytes blocks production of mature IL-1 beta, indicating that it is a potential therapeutic target.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients.

            The possibility that hypersecretion of corticotropin-releasing factor (CRF) contributes to the hyperactivity of the hypothalamo-pituitary-adrenal axis observed in patients with major depression was investigated by measuring the concentration of this peptide in cerebrospinal fluid of normal healthy volunteers and in drug-free patients with DSM-III diagnoses of major depression, schizophrenia, or dementia. When compared to the controls and the other diagnostic groups, the patients with major depression showed significantly increased cerebrospinal fluid concentrations of CRF-like immunoreactivity; in 11 of the 23 depressed patients this immunoreactivity was greater than the highest value in the normal controls. These findings are concordant with the hypothesis that CRF hypersecretion is, at least in part, responsible for the hyperactivity of the hypothalamo-pituitary-adrenal axis characteristic of major depression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones.

              The production and action of immunoregulatory cytokines, including interleukin-1 (IL-1), are inhibited by glucocorticoid hormones in vivo and in vitro. Conversely, glucocorticoid blood levels were increased by factors released by human leukocytes exposed to Newcastle disease virus preparations. This activity was neutralized by an antibody to IL-1. Therefore the capacity of IL-1 to stimulate the pituitary-adrenal axis was tested. Administration of subpyrogenic doses of homogeneous human monocyte-derived IL-1 or the pI 7 form of human recombinant IL-1 to mice and rats increased blood levels of adrenocorticotropic hormone (ACTH) and glucocorticoids. Another monokine, tumor necrosis factor, and the lymphokines IL-2 and gamma-interferon had no such effects when administered in doses equivalent to or higher than those of IL-1. The stimulatory effect of IL-1 on the pituitary-adrenal axis seemed not to be mediated by the secondary release of products from mature T lymphocytes since IL-1 was endocrinologically active when injected into athymic nude mice. These results strongly support the existence of an immunoregulatory feedback circuit in which IL-1 acts as an afferent and glucocorticoid as an efferent hormonal signal.
                Bookmark

                Author and article information

                Journal
                Molecular Neurobiology
                Mol Neurobiol
                Springer Nature America, Inc
                0893-7648
                1559-1182
                February 1995
                February 1995
                : 10
                : 1
                : 47-71
                Article
                10.1007/BF02740837
                7598832
                825312b1-9e96-4d15-923c-7866501ff565
                © 1995
                History

                Comments

                Comment on this article