0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Incorporating novel input variable selection method for in the different water basins of Thailand

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: not found
          • Article: not found

          Random Forests

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Long Short-Term Memory

            Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient-based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O(1). Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Classification and regression trees

                Bookmark

                Author and article information

                Journal
                Alexandria Engineering Journal
                Alexandria Engineering Journal
                Elsevier BV
                11100168
                January 2024
                January 2024
                : 86
                : 557-576
                Article
                10.1016/j.aej.2023.11.046
                8254a209-5c54-4884-aec7-2c84732c76bb
                © 2024

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article