7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Landscape level patterns of grasshopper communities in Inner Mongolia: interactive effects of livestock grazing and a precipitation gradient

      , , ,
      Landscape Ecology
      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Plant species loss decreases arthropod diversity and shifts trophic structure.

          Plant diversity is predicted to be positively linked to the diversity of herbivores and predators in a foodweb. Yet, the relationship between plant and animal diversity is explained by a variety of competing hypotheses, with mixed empirical results for each hypothesis. We sampled arthropods for over a decade in an experiment that manipulated the number of grassland plant species. We found that herbivore and predator species richness were strongly, positively related to plant species richness, and that these relationships were caused by different mechanisms at herbivore and predator trophic levels. Even more dramatic was the threefold increase, from low- to high-plant species richness, in abundances of predatory and parasitoid arthropods relative to their herbivorous prey. Our results demonstrate that, over the long term, the loss of plant species propagates through food webs, greatly decreasing arthropod species richness, shifting a predator-dominated trophic structure to being herbivore dominated, and likely impacting ecosystem functioning and services.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Grassland ecosystems in China: review of current knowledge and research advancement.

            Grasslands are the dominant landscape in China, accounting for 40% of the national land area. Research concerning China's grassland ecosystems can be chronologically summarized into four periods: (i) pre-1950s, preliminary research and survey of grassland vegetation and plant species by Russians, Japanese and Western Europeans, (ii) 1950-1975, exploration and survey of vegetation, soils and topography as part of natural resource inventory programmes by regional and national institutions mainly led by the Chinese Academy of Sciences, (iii) 1976-1995, establishment of field stations for long-term ecological monitoring and studies of ecosystem processes, (iv) 1996-present, comprehensive studies of community dynamics and ecosystem function integrating multi-scale and multidisciplinary approaches and experimental manipulations. Major findings of scientific significance in China's grassland ecosystem research include: (i) improved knowledge on succession and biogeochemistry of the semi-arid and temperate grassland ecosystems, (ii) elucidation of life-history strategies and diapause characteristics of the native grasshopper species as one of the key grassland pests, and (iii) development of effective management strategies for controlling rodent pests in grassland ecosystems. Opportunities exist for using the natural grasslands in northern China as a model system to test ecosystem theories that so far have proven a challenge to ecologists worldwide.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Contrasting effects of plant richness and composition on insect communities: a field experiment.

              We experimentally separated the effects of two components of plant diversity-plant species richness and plant functional group richness-on insect communities. Plant species richness and plant functional group richness had contrasting effects on insect abundances, a result we attributed to three factors. First, lower insect abundances at higher plant functional group richness were explained by a sampling effect, which was caused by the increasing likelihood that one low-quality group, C4 grasses, would be present and reduce average insect abundances by 25%. Second, plant biomass, which was positively related to plant functional group richness, had a strong, positive effect on insect abundances. Third, a positive effect of plant species richness on insect abundances may have been caused by greater availability of alternate plant resources or greater vegetational structure. In addition, a greater diversity of insect species, whose individual abundances were often unaffected by changes in plant species richness, may have generated higher total community abundances. After controlling for the strong, positive influence of insect abundance on insect diversity through rarefaction, insect species richness increased as plant species richness and plant functional group richness increased. Although these variables did not explain a high proportion of variation individually, plant species richness and plant functional group richness had similar effects on insect diversity and opposing effects on insect abundances, and both factors may explain how the loss of plant diversity influences higher trophic levels.
                Bookmark

                Author and article information

                Journal
                Landscape Ecology
                Landscape Ecol
                Springer Nature
                0921-2973
                1572-9761
                November 2015
                August 8 2015
                : 30
                : 9
                : 1657-1668
                Article
                10.1007/s10980-015-0247-8
                825a1ff5-e6ad-4923-95ff-618b489123aa
                © 2015
                History

                Comments

                Comment on this article