20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Male gender predicts mortality in a large cohort of patients receiving antiretroviral therapy in Uganda

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Because men in Africa are less likely to access HIV/AIDS care than women, we aimed to determine if men have differing outcomes from women across a nationally representative sample of adult patients receiving combination antiretroviral therapy in Uganda.

          Methods

          We estimated survival distributions for adult male and female patients using Kaplan-Meier, and constructed multivariable regressions to model associations of baseline variables with mortality. We assessed person-years of life lost up to age 55 by sex. To minimize the impact of patient attrition, we assumed a weighted 30% mortality rate among those lost to follow up.

          Results

          We included data from 22,315 adults receiving antiretroviral therapy. At baseline, men tended to be older, had lower CD4 baseline values, more advanced disease, had pulmonary tuberculosis and had received less treatment follow up (all at p < 0.001). Loss to follow up differed between men and women (7.5 versus 5.9%, p < 0.001). Over the period of study, men had a significantly increased risk of death compared with female patients (adjusted hazard ratio 1.43, 95% CI 1.31-1.57, p < 0.001). The crude mortality rate for males differed importantly from females (43.9, 95% CI 40.7-47.0/1000 person-years versus 26.9, 95% CI 25.4-28.5/1000 person years, p < 0.001). The probability of survival was 91.2% among males and 94.1% among females at 12 months. Person-years of life lost was lower for females than males (689.7 versus 995.9 per 1000 person-years, respectively).

          Conclusions

          In order to maximize the benefits of antiretroviral therapy, treatment programmes need to be gender sensitive to the specific needs of both women and men. Particular efforts are needed to enroll men earlier into care.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Patient Retention in Antiretroviral Therapy Programs in Sub-Saharan Africa: A Systematic Review

          Introduction In the half decade since the first large-scale antiretroviral treatment (ART) programs for HIV/AIDS were launched in sub-Saharan Africa, much attention has focused on patients' day-to-day adherence to antiretroviral (ARV) medications [1–3]. Long-term retention of patients in treatment programs, a prerequisite for achieving any adherence at all, has received far less attention. Perhaps because most large scale treatment providers have few resources available to track missing patients, most studies treat patient attrition as a side issue and focus solely on describing those patients who are retained. Moreover, adherence can be assessed over very short periods, whereas long-term retention requires, by definition, long-standing programs. Attrition from antiretroviral treatment programs is generally divided into four categories. The two most common are (1) the death of the patient—several studies have reported high rates of early mortality—and (2) “loss to follow-up,” a catch-all category for patients who miss scheduled clinic visits or medication pickups for a specified period of time. Some patients remain in care but stop taking ARV medications (3). Others transfer to other facilities and continue on ART (4). Treatment discontinuation raises some of the same concerns about drug resistance that incomplete adherence does and, even worse, negates much of the benefit sought by those implementing treatment programs. Patients with clinical AIDS who discontinue ART will likely die within a relatively short time [4]. High rates of attrition from treatment programs thus pose a serious challenge to program implementers and constitute an inefficient use of scarce treatment resources. In this study, we analyzed reported treatment program retention and attrition in sub-Saharan Africa in order to document the magnitude of the problem and help policy makers and program managers address the challenge of patient retention. Methods Definitions For this review, “retention” refers to patients known to be alive and receiving highly active ART at the end of a follow-up period. “Attrition” is defined as discontinuation of ART for any reason, including death, loss to follow-up, and stopping ARV medications while remaining in care. Transfer to another ART facility, where reported, is not regarded as attrition—patients who transfer are assumed to be retained. We accepted the varying definitions of loss to follow-up used by the respective studies. Many studies considered patients lost if they were more than 3 mo late for a scheduled consultation or medication pickup, but some studies used more or less stringent definitions ranging from 1 to 6 mo late for a scheduled consultation or medication pick-up. Inclusion and Exclusion Criteria Studies were included in the review if they reported the proportion of adult HIV-1 patients retained in highly active ART programs implemented in service delivery (nonresearch) settings in sub-Saharan Africa. All patients who initiated ART had to be included in the report, not just those still in care at the time of censoring (i.e., only intention-to-treat analyses were included). Clinical trials, including Phase 3 trials, were excluded, although some subjects of reviewed studies transferred into the treatment program from a clinical trial. A median follow-up period of at least six full months (26 weeks) was also required. Studies that reported mortality but not other categories of attrition and studies that reported only on-treatment analyses, or where we were unable to determine whether the study was intention-to-treat or not, were also excluded. A few of the reviewed studies did not differentiate between adult and pediatric patients; those that considered only pediatric patients were excluded. Search Strategy To identify eligible studies, we conducted a systematic search of the English-language published literature, gray literature (project reports available online), and conference abstracts between 2000 and 2007. The search included Ovid Medline (1996 to July 2007), EMBASE (inception to July 2007), ISI Web of Science (August 2002 to July 2007), the Cumulative Index to Nursing & Allied Health Literature (2002 to July 2007), and the Cochrane Database of Systematic Reviews (inception to second quarter 2007). We also searched the abstracts of the conferences of the International AIDS Society (inception to 2006), the Conference on Retroviruses and Opportunistic Infections (inception to 2007), the HIV Implementers' Meetings (2006–2007), and the South African AIDS Conference (2005–2007). The bibliographies of five recently published reviews of treatment outcomes, mortality, or ARV adherence in resource-constrained settings were also searched [1–3,5,6]. Our search strategy combined the terms “antiretroviral” and “Africa” or “developing countries” with each of retention/attrition/loss to follow-up/mortality/evaluation/efficacy. When more than one source reported on the same cohort of patients, the source containing the most detailed data about retention and attrition or the longest follow-up period was selected for the review. Although non-English databases were not searched, English-language abstracts of non-English papers identified in our search were included. Eligible studies were identified by the first author (SR) and eligibility confirmed by the other authors (MF and CG). It should be noted that the Antiretroviral Therapy in Low Income Countries (ART-LINC) collaboration has recently reported aggregate 1 y mortality and loss to follow-up rates for 13 cohorts in sub-Saharan Africa [5]. Some of the patients in these cohorts are included in the studies reviewed here. To avoid duplication, findings from the ART-LINC cohorts were not included in this analysis but are noted in the discussion. Data Analysis Most studies reported patient attrition at months 6, 12, and/or 24 after treatment initiation. We therefore used these same intervals in this analysis. For papers that reported on intervals other than 6, 12, or 24 mo, we classified the reported attrition rate using the nearest time point. If the report did not list attrition rates by time, but did list a median duration of observation, we estimated attrition at the 6, 12, or 24 mo interval closest to the reported observation period. In some cases, follow-up periods and/or retention rates were calculated by the authors using data provided in the article or extracted from figures (e.g. Kaplan-Meier survival curves). Where appropriate, we calculated weighted averages for demographic features of the cohort participants or other factors related to the studies. For proportions, averages were weighted by the inverse of their variances [1 ÷ (p × [1 − p] ÷ n), where p is the proportion and n is the sample size]. Because we did not have the individual patient data for continuous variables nor their standard deviations, we were unable to calculate variances for these variables. In these situations, we weighted by cohort size. In some instances, studies reported follow-up to 12 or 24 mo but did not report on intermediate retention rates. In plotting attrition for such studies over time we used extrapolated values, taking the midpoint between the known adjacent values. For example, if a study reported to 12 mo but did not report the 6 mo value, we defined the 6 mo value as the midpoint between 0 and 12 mo, with 100% at baseline representing all of those who initially started therapy. We calculated weighted average attrition rates at each interval (6, 12, and 24 mo) for the reported numbers of participants remaining when using reported values and for the estimated numbers of participants remaining when using extrapolated values. Selected demographic variables relating cohort or program characteristics to attrition rates were analyzed using linear regression. Because only a few studies reported beyond 24 mo, we were unable to calculate any meaningful summary statistics beyond the 24 mo mark. To estimate aggregate average attrition rates at 6, 12, and 24 mo we used several approaches. Attrition for each program was plotted separately and attrition rates calculated as the percentage of patients lost per month. We also plotted Kaplan-Meier survival curves using the 6, 12, and 24 mo intervals as the step-down points. Fewer studies presented 12 mo data than 6 mo data, however, and fewer still contained 24 mo data. Many of the studies with the highest attrition contributed data only for the shorter time intervals. Given the concern that shorter durations of reporting could be associated with lower rates of patient retention, we also conducted sensitivity analyses to model possible future retention. For the best-case scenario, we optimistically assumed that no further attrition would occur beyond the last reported observation and extrapolated the last reported retention value forward to 24 mo. In the worst-case scenario, we extrapolated the slope of attrition forward in time, assuming that each cohort's attrition would continue along the same slope from the last reported observation to month 24. We assigned a lower limit of 0% in those situations where the estimated future retention rate fell below 0%. Our midpoint scenario was the mean of the best- and worst-case scenarios. Analyses were conducted using Excel, SAS version 8.2, and SPSS version 11.0. Results We included 32 publications reporting on 33 patient cohorts totaling 74,289 patients in 13 countries in our analysis. These studies were selected from a total of 871 potentially relevant, unique citations identified in our search (Figure 1). Figure 1 Study Flow Chart Table 1 summarizes key features of the studies, including the sites at which they were conducted. Not all of the publications reported all the details we sought about program and patient characteristics and retention, but all provided at least one indicator of patient retention after a median follow-up period of at least 6 mo. The studies report on patients who initiated ART as early as 1996, though most enrolled their cohorts between 2001 and 2004. The studies were published or presented between 2002 and 2007, with the majority appearing as peer reviewed articles in 2006 or 2007. Most of the programs were implemented by the public sector (17 of 33, 52%). Of 33 cohorts, 15 (45%) fully subsidized the cost of ART; six (18%) were partially subsidized; and six (18%) required patients to pay fully for their care; the rest did not report their payment structure. Roughly half were single-site programs (15 of 33, 45%); multi-site programs contributed data from between two and 69 sites. Table 1 Characteristics of Antiretroviral Treatment Programs and Patient Cohorts Included in This Analysis (extended on next page) Table 1 Extended. Table 1 also provides the population characteristics of the cohorts studied. The weighted mean age of the cohort participants was 35.5 y, and 53.7% of all patients were female (range 6%–70%). All but one cohort had median starting CD4+ T cell counts at or well below 200 × 103 cells/mm3, with a weighted mean starting CD4+ T cell count of 132 × 103 cells/mm3 (range 43–204). Table 2 presents the proportion of patients from each cohort who remained alive and under treatment with antiretroviral medications, transferred to another treatment facility, died, were lost to follow-up, or discontinued treatment with ARVs but remained in care at the end of the median follow-up period. Bearing in mind that we excluded studies with less than 6 mo median follow-up, the weighted average follow-up was 9.9 mo, after which time overall retention of patients alive, in care, and on ART was 77.5%. Table 2 Median Follow-Up and Rates of Patient Attrition, as Reported, from Antiretroviral Treatment Programs Across all the cohorts, the largest contributor to attrition was loss to follow-up (56% of attrition), followed by death (40% of attrition). The widely varying definitions of loss to follow-up used by the studies are indicated in Table 2. A small fraction (4% of attrition) discontinued ART but remained under care at the same site. Table 3 reports overall retention at 6, 12, and 24 mo. SA 1 had the highest retention at 12 mo. While this program did not report for 6 mo, at 12 mo its retention of 90% was still higher than the highest reported value among the programs that reported their 6 mo outcomes. The programs with the lowest retention at each time point were Malawi 4 (55%) at 6 mo; Uganda 2 (49%) at 12 mo; and Uganda 1 (46%) at 24 mo. Malawi 4 did not report beyond 6 mo and Uganda 2 did not report beyond 12 mo, but were both on a trajectory toward even lower retention rates at the later time points. Table 3 Retention of Patients at 6, 12, and 24 Months after Initiation of ART Using linear regression, we found no association between 6 mo attrition rates and cohort size (p = 0.32), attrition and baseline CD4+ cell counts (p = 0.72), proportion of women (p = 0.23), or year of program initiation (p = 0.40). Programs that required no payment had higher retention rates at 6 mo compared to those requiring partial or full payment (86.5% versus 76.7%, p = 0.01). Figures 2A–2C plot attrition rates for each cohort separately. The studies are clustered on the basis of duration of reporting. By 6 mo, 9 of 33 cohorts (27%) had 20% or greater attrition rates; by 12 mo this proportion had risen to 16 of 25 reporting cohorts (64%). Figure 2 Attrition Rates by Reporting Duration (A) Studies reporting to 6 mo median follow-up. (B) Studies reporting to 12 mo median follow-up. (C) Studies reporting to 24 mo median follow-up. (D) Weighted mean attrition rates by duration cohort. SA, South Africa. The weighted mean retention rates as reported in the studies were 79.8% at 6 mo, 75.1% at 12 mo, and 61.6% at 24 mo. As an alternative approach, we also plotted Kaplan-Meier survival curves at months 6, 12, and 24 for all the studies combined. The largest fall-off occurred between 6 and 12 mo; overall retention was approximately 89% by 6 mo, 70% by 1 year, and just under 60% by 2 years. Four of the eight studies in Figure 2A with attrition of at least 20% at 6 mo included data only to 6 mo. Similarly, of the cohorts with data at 12 mo and attrition of 25% or more, six of 11 did not extend beyond 12 mo. We therefore calculated the slopes for attrition rates for each group of cohorts in Figure 2A–2C separately, to determine if the average monthly attrition rates differed as the duration of reporting increased. As shown in Figure 2D, the weighted mean attrition rates were 3.3%/month, 1.9%/month, and 1.6%/month for studies reporting to 6 mo, 12 mo, and 24 mo, respectively, raising the possibility that shorter durations of reporting were associated with lower retention rates. Given this apparent reporting bias, we were concerned that reporting average retention rates using the simple aggregate weighted averages reported above would overestimate actual retention. We therefore conducted sensitivity analyses to model attrition rates under three different scenarios. As shown in Figure 3, all three scenarios are the same at 6 mo, with approximately 80% retention. Under the best-case scenario, further attrition would be negligible, with more than 76% still retained by the end of 2 y. Under the worst-case scenario, 76% of patients would be lost by 2 y. The midpoint scenario predicted patient retention of 50% by 2 y. Figure 3 Sensitivity Analysis for Attrition Discussion The analysis presented here suggests that ART programs in Africa are retaining, on average, roughly 80% of their patients after 6 mo on ART and between one-fourth and three-fourths of their patients by the end of 2 y, depending on the estimating method used. Prior to the availability of ART in Africa, the median interval from HIV infection to AIDS-related death was under 10 y; once a patient was diagnosed with AIDS, median survival was less than 1 y [7]. Since most patients in Africa initiate ART only after an AIDS diagnosis, most ART patients would have died within a year had antiretroviral therapy not been available. Each patient who is retained in care and on ART can thus be regarded as a life saved and a source of tremendous benefit to patients' families and communities. For those who have struggled to launch and expand treatment programs in resource-constrained settings, reaching a 60% patient retention—and thus survival—rate after two years of treatment, as estimated by the Kaplan-Meier survival analysis, in just a few years' time is an extraordinary accomplishment. It is also noteworthy in the global context: in developed countries, adherence to medication for chronic diseases in general averages only 50% [8]. Similarly, treatment completion rates for tuberculosis, which requires a temporary rather than permanent commitment to adherence and a less demanding dosing schedule, average 74% in the African region, with a range among countries from 22% to 94% [9]. Taken in the context of medication adherence in general, the record of African ART programs lies within the bounds of previous experience. At the same time, however, losing up to half of those who initiate ART within two years is cause for concern. From the data as reported, attrition averaged roughly 22% at 10 mo of follow-up. This average comprised mainly deaths (40% of attrition) and losses to follow-up (56%). In comparison, the ART-LINC Collaboration, which analyzed data from 18 cohorts across the developing world, reported loss to follow-up rates among the 13 sub-Saharan African cohorts averaging 15% (range 0%–44%) in the first year after initiation; mortality averaged 4.2% across all 18 cohorts (African regional rate not provided) [5]. On the basis of our survival and sensitivity analyses, we believe that actual attrition is higher than the 22% average we report, mainly because the programs with the highest attrition were least likely to provide data beyond the first 6 mo of ART. There are several plausible explanations for the higher attrition seen among programs with shorter durations of reporting. One possibility is that limited availability of resources to a given program could affect both its ability to retain patients and to conduct long-term surveillance of its outcomes. Another, less pessimistic explanation is that shorter durations of reporting reflect newer programs that are still in the process of developing optimal strategies for patient retention: had they reported at a later point in their implementation, retention rates might have been higher. The magnitude of the under-reporting bias is also uncertain, although our sensitivity analysis gives a plausible range between two implausible extremes (the best case being implausible because it assumes zero further attrition beyond the point of last reporting, and the worst case because it assumes that there will be constant attrition over time, rather than reaching a plateau or at least slowing substantially). The midpoint scenario suggests that approximately half of all patients started on ART were no longer on treatment at the end of two years. One of the principal challenges to this analysis is interpreting the large proportion of attrition from “loss to follow-up.” Some of these patients undoubtedly represent unrecorded deaths, but others may be patients who identified alternative sources for ART or had taken an extended “break” from therapy, to which they will return when their condition worsens again or they obtain the financial resources needed for transport or clinic fees. One study in Malawi discovered, for example, that 24% of patients originally recorded as lost to follow-up re-enrolled at the same site two years later when ART became free of charge [10]. For some of the studies included in this analysis, on the other hand, the unrecorded death explanation is more persuasive. For example, the Zambia 1 cohort of more than 16,000 patients reported 21% loss to follow-up after approximately 6 mo [11]. The scope and scale of this program means that it is the primary source of ART in Lusaka, making it unlikely that most of the estimated 3,300 lost patients could have found alternative sources of care. A recent attempt to trace lost-to-follow-up patients in Malawi determined that 50% had died, 27% could not be found, and most of the rest had stopped ART [12]. Because those reporting on these cohorts do not know what ultimately happened to patients categorized as lost to follow-up, high loss to follow-up rates can have varied interpretations. A good deal of research on barriers to adherence and reasons for treatment discontinuation has been published [13]. Important barriers to adherence include cost of drugs and/or transport, fear of disclosure or stigma, and side effects [14,15]. Some of these barriers can be addressed relatively easily, for example by providing transport vouchers to ensure that patients can attend the clinic; others, such as stigma, require more profound changes. In any case, high reported rates of loss to follow-up are a strong call to improve patient tracing procedures, to minimize the number of patients who fall into the difficult-to-address category of “lost, reason unknown.” Given that the long-term prognosis of ART patients is inversely related to starting CD4+ T cell counts [16,17], an additional issue to consider is the low median starting CD4+ cell counts reported by every one of the studies in this analysis. This problem has been identified previously, particularly in South Africa [18–20]. The analysis here makes clear that the problem is nearly universal in Africa and cuts across all types of treatment programs. It is evident in the high death rates reported by some studies after only a few months of follow-up, such as Malawi 3. There is a high degree of heterogeneity in retention rates between the different cohorts in our analysis and among categories of attrition. Some programs appear to have been highly successful in retaining patients, while others clearly struggled to do so. Some programs have suffered high mortality rates but low loss to follow-up, others the opposite. Early mortality, which may be largely due to the late stage at which many patients present for treatment, requires interventions different from those needed to address later loss to follow-up, about which very little is known. Interventions to address the various types of attrition must thus be tailored to local circumstances. The success of some programs with very high retention may provide examples that others can follow. The findings here can thus be seen as a part of an ongoing process to identify and solve problems within existing treatment programs, even as we expand their scope and launch new ones. Our analysis has a number of limitations, chiefly that incomplete reporting forced us to extrapolate some values. Extrapolating backward assumes that attrition rates are distributed linearly over time, which is unlikely to be the case. Evidence from this and other studies suggest that the highest attrition occurs during the first 6 mo. However, this limitation only pertains to the shape of the attrition curves, not to their final end points. Extrapolating forward, which we used only in the sensitivity analysis to establish the hypothetical “worst case” scenario, also suffers from this limitation, compounded by the fact that our confidence in the forward boundary is limited. In addition, our analysis is necessarily limited to publicly available reports and thus potentially subject to publication bias. Researchers may be less inclined to publish long-term outcomes from cohorts that have experienced very high early attrition. It is also likely that programs with better access to resources, both financial and human, are also better able to monitor, analyze, and publish their results. Our aggregate findings may thus represent the better-resourced programs in Africa. In conclusion, African ART programs are retaining about 60% of their patients in the first two years. This average masks a great deal of heterogeneity, however. At one end of the spectrum represented by the reviewed studies, two-year retention neared 90%; at the other end, attrition reached 50%. Better information on those who are lost to follow-up is urgently needed. Since losses to follow-up account for the majority of all attrition in more than half of the studies reviewed, the problem of attrition cannot be addressed effectively without better means to track patients. Only then can we address the pressing question of why patients drop out and what conditions, assistance, or incentives will be needed to retain them. Supporting Information Protocol S1 Search Protocol (85 KB DOC) Click here for additional data file.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prognosis of patients with HIV-1 infection starting antiretroviral therapy in sub-Saharan Africa: a collaborative analysis of scale-up programmes.

            Prognostic models have been developed for patients infected with HIV-1 who start combination antiretroviral therapy (ART) in high-income countries, but not for patients in sub-Saharan Africa. We developed two prognostic models to estimate the probability of death in patients starting ART in sub-Saharan Africa. We analysed data for adult patients who started ART in four scale-up programmes in Côte d'Ivoire, South Africa, and Malawi from 2004 to 2007. Patients lost to follow-up in the first year were excluded. We used Weibull survival models to construct two prognostic models: one with CD4 cell count, clinical stage, bodyweight, age, and sex (CD4 count model); and one that replaced CD4 cell count with total lymphocyte count and severity of anaemia (total lymphocyte and haemoglobin model), because CD4 cell count is not routinely measured in many African ART programmes. Death from all causes in the first year of ART was the primary outcome. 912 (8.2%) of 11 153 patients died in the first year of ART. 822 patients were lost to follow-up and not included in the main analysis; 10 331 patients were analysed. Mortality was strongly associated with high baseline CD4 cell count (>/=200 cells per muL vs /=60 kg vs <45 kg; 0.23, 0.18-0.30), and anaemia status (none vs severe: 0.27, 0.20-0.36). Other independent risk factors for mortality were low total lymphocyte count, advanced age, and male sex. Probability of death at 1 year ranged from 0.9% (95% CI 0.6-1.4) to 52.5% (43.8-61.7) with the CD4 model, and from 0.9% (0.5-1.4) to 59.6% (48.2-71.4) with the total lymphocyte and haemoglobin model. Both models accurately predict early mortality in patients starting ART in sub-Saharan Africa compared with observed data. Prognostic models should be used to counsel patients, plan health services, and predict outcomes for patients with HIV-1 infection in sub-Saharan Africa. US National Institute of Allergy And Infectious Diseases, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and National Cancer Institute. Copyright 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Correcting Mortality for Loss to Follow-Up: A Nomogram Applied to Antiretroviral Treatment Programmes in Sub-Saharan Africa

              Introduction The World Health Organization (WHO) estimates that about 4 million people were receiving antiretroviral therapy (ART) in low- and middle-income countries by the end of 2008, with coverage reaching 42% of the estimated 9.5 million in need of ART [1]. Sub-Saharan Africa represented 70% of the estimated treatment need and 73% of the total number of people receiving treatment in low- and middle-income countries at the end of 2008 [1]. The provision of ART in resource-limited settings follows a public health approach, which is characterized by a limited number of regimens and the standardization of clinical and laboratory monitoring [2]. This approach has been shown to result in similar or superior adherence to therapy and similar virological response when compared to industrialized countries [3]–[5]. Loss of patients to follow-up and care is, however, an important problem in resource-limited settings: A systematic review of published retention rates in ART clinics in sub-Saharan Africa showed that the proportion of patients retained 2 years after starting therapy was approximately 60% [6]. Similarly, in a collaborative analysis of patients starting ART in 15 treatment programmes in Africa, Asia, and South America we found that 21% of patients were lost to follow-up 6 months after starting ART [7]. A systematic review and meta-analysis of studies tracing patients lost to follow-up found that these patients experience high mortality [8] compared to patients remaining in care [9]. The successful treatment of individual patients and the monitoring and evaluation of ART programmes both depend on regular and complete patient follow-up. Programmes with high rates of loss to follow-up and poor ascertainment of deaths in patients lost will underestimate mortality of all patients starting ART. For example, standard Kaplan-Meier survival analyses in which follow-up time in patients lost to follow-up is censored at the last visit will be biased because mortality of these patients is assumed to be identical to comparable patients remaining in care. Analyses restricted to patients remaining in care will also underestimate mortality among all patients who started ART. Biased estimates of programme-level mortality hamper the evaluation of single programmes and the comparison between different programmes and settings. Nomograms are widely used in medicine [10]. They are graphs that allow the approximate graphical computation of a function; placing a line across its several scales immediately solves the formula [11]. We propose a nomogram and a web-based calculator to correct estimates of programme-level mortality for loss to follow-up. We illustrate its use in a case study from Kenya. We show how mortality among patients lost to follow-up can be predicted on the basis of studies that traced patients to ascertain their vital status. Finally, we apply these methods to 11 ART programmes in sub-Saharan Africa and compare uncorrected and corrected estimates of mortality at 1 year to assess the typical bias that is introduced when loss to follow-up is ignored. Methods Deriving the Nomogram Mortality of all patients starting ART in a treatment programme over a defined time period is a weighted average of mortality among patients remaining in care and patients lost to follow-up. It depends on the percentage of patients lost, mortality among patients lost to follow-up, and mortality among patients not lost to follow-up. The mortality observed among patients remaining in care can be multiplied by a correction factor C to obtain an estimate of programme-level mortality that takes deaths among patients lost to follow-up into account. This correction factor can be obtained from a nomogram. The algebraic derivation of this nomogram is as follows: Let MU  =  Uncorrected estimates of programme-level mortality (with censoring of patients lost) MC  =  Corrected estimate of programme-level mortality, taking deaths among patients lost into account. MNL  =  Mortality observed in patients retained in care (not lost to follow-up) ML  =  Mortality estimated in patients lost to follow-up r =  Proportion lost to follow-up Note that MNL , ML , and r need to refer to the same time period (for example the first year of ART). Then Dividing both sides of this equation by MNL , we obtain the correction factor which can be used to obtain MC for a given MNL from MC  =  MNLC. The nomogram (Figure 1) plots the ratio of the mortality among patients lost and not lost to follow-up (ML /MNL ) on lines defined by the proportion of patients lost to follow-up (r) which are used to read off correction factor C. The broken lines refer to the case-study described in Box 1. Further details on calculations are provided in Text S1. Figures S1 and S2 provide clean versions of the nomogram. These are also available from http://www.iedea-sa.org. 10.1371/journal.pmed.1000390.g001 Figure 1 Nomogram for obtaining correction factors to adjust programme-level mortality estimates, based on the observed mortality among patients not lost to follow-up, the observed proportion of patients lost and an estimate of mortality among patients lost. The red dot and broken lines relate to the case study described in Box 1. Box 1. Example from Western Kenya Using Tracing Method The Academic Model Providing Access to Healthcare (AMPATH) is a large ART programme in western Kenya [21],[22]. AMPATH is based on a partnership between the Moi University School of Medicine in Eldoret and Indiana University School of Medicine in Indianapolis, Indiana, United States of America. AMPATH provides HIV care and treatment to over 70,000 adults and children living with HIV/AIDS in 18 clinics throughout western Kenya. Patients are managed according to National Kenyan protocols, which are consistent with WHO guidelines. AMPATH undertakes active outreach to patients who miss scheduled appointments (called lost to follow-up in this article). A locator card is completed for all patients enrolling in the programme, which includes contact information and a map to the patient's residence. The results of the outreach programme have been described for the Moi Teaching and Referral Hospital in the city of Eldoret and the rural health centre in Mosoriot [23]. A total of 8,977 adult patients were enrolled in the two participating sites; 3,624 patients were lost to follow-up and 5,353 remained in care between 1 January 2005 and 31 January 2007. Outreach efforts were initiated for 1,143 (31.5%) of patients lost and the vital status of 621 (54.3%) patients could be determined. The naïvely calculated Kaplan-Meier (KM) estimate of programme-level mortality (MU ), ignoring loss to follow-up, was 1.7%. This estimate can now be corrected in six simple steps: Determine the percentage of patients lost to follow-up (r): 3,624 of 8,977 patients were lost to follow-up: 40.5% Determine mortality among patients lost to follow-up (ML ): 124 of the 621 patients traced had died. The KM estimate was 20.0% Determine mortality among patients not lost to follow-up (MNL ): 126 of the 5,353 patients remaining in care had died. The KM estimate was 2.2% . Calculate the ratio of mortality among patients lost to follow-up and patients not lost to follow-up (ML divided by MNL ): 20.0 divided by 2.2 is 9.1 Obtain the correction factor C from the nomogram: 4.3 (see broken lines in Figure 1 ) Calculate the corrected programme-level mortality: 4.3 times 2.2% is 9.5% Not all patients lost to follow-up could be located and mortality among those who could not be found might have been even higher than in those who were successfully traced. Overall mortality among patients lost to follow-up may thus have been higher than 20%. The effect of assuming a higher mortality among patients lost to follow-up can be examined in a sensitivity analysis: repeating the steps assuming that 25% or 30% of patients lost to follow-up had died results in estimates of corrected programme-level mortality of 11.4% and 13.5%. Clearly, deaths in patients lost to follow-up are an important issue when estimating programme-level mortality in the AMPATH programme. Two Ways of Estimating Mortality among Patients Lost to Follow-Up The parameters r and MNL can be observed directly, but mortality among patients lost to follow-up must be estimated. This can be done in dedicated studies tracing patients lost to follow-up, for example by visiting the homes of patients lost to follow-up or by linking treatment programme with death registry data to ascertain the vital status of patients lost to follow-up [12]–[15]. This method will be henceforth be called “tracing method.” In many situations, however, data from dedicated tracing studies are not available. In this case, mortality among patients lost to follow-up may be predicted on the basis of published data from similar settings. We used Brinkhof and colleagues' systematic review and meta-regression analysis of studies tracing patients lost to follow-up [8]. The meta-regression analysis was based on a total of 15 studies in patients on ART from sub-Saharan Africa. There was an inverse relation between mortality among those lost to follow-up and the rate of loss to follow-up in the programme: The higher the rate of loss to follow-up the lower the mortality among those lost. Figure 2 shows the predicted mortality among patients lost to follow-up according to the percentage of patients lost in the programme, with 95% confidence intervals (CIs). The equation is as follows: where a = 0.57287 and b = −4.04409. 10.1371/journal.pmed.1000390.g002 Figure 2 Predicted mortality among patients lost to follow-up according to percent of patients lost in programme (solid line) with 95% CI (limits of grey area). See text for regression equation. Mortality among patients lost to follow-up can be calculated using the formula above or read off Figure 2, based on the proportion of patients lost to follow-up in the programme. This method will henceforth be called “meta method.” Allowing for Uncertainty We used Monte Carlo simulations with 100,000 iterations to calculate 95% CIs for the corrected programme-level mortality (MC ). These simulations allow for uncertainty in the estimation of (i) mortality among patients remaining in care (MNL ); (ii) in the proportion of patients lost to follow-up (r); and (iii) of mortality among patients lost to follow-up (ML ). Further details are provided in Text S1. Application to ART Programmes in Sub-Saharan Africa The International epidemiological Databases to Evaluate AIDS (IeDEA, see http://www.iedea-hiv.org) is a collaborative network of HIV/AIDS treatment programmes in seven regions of the world, including North America, Asia and the Pacific, the Caribbean and Latin America, and four regions in sub-Saharan Africa (Central Africa, East Africa, West Africa, and Southern Africa). IeDEA and its predecessor, the ART in Lower Income Countries (ART-LINC) collaboration, have been described in detail elsewhere [16]–[20]. These collaborative networks were established to address clinical and operational research questions that require large patient numbers or many treatment programmes, for example to compare outcomes of ART between different settings, delivery modes, and types of monitoring. We included 11 ART programmes from sub-Saharan Africa. No direct evidence on the mortality of patients lost to follow-up from tracing studies was available for these programmes, and mortality was therefore predicted using the meta method. All patients aged 16 years or older with complete data on sex and date of birth, and who were treatment naïve at start of combination ART were included in the analysis. Combination ART was defined as a minimum of three antiretroviral drugs from two drug classes. Advanced stage of disease was defined as WHO stages III or IV or Centers for Disease Control and Prevention (CDC) clinical stage C. Measurements of laboratory values closest to the starting date of ART (within 6 months before up to one week after the date of starting ART) were taken as the baseline levels. The data collected at participating sites were cleaned, merged, and analysed centrally. At all sites, institutional review boards had approved the collection and transfer of data. For each programme we determined the proportion of patients lost to follow-up at 1 year (r). A patient was considered lost to follow-up if the last visit was more than 9 months before the closure date for that site, with the closure date defined as the most recent visit date recorded in the database. This allowed for time during which a patient could have returned for a visit. Only patients who potentially had 9 months of follow-up were included in the calculations of r. We used Kaplan-Meier methods to estimate mortality (with 95% CI) at 1 year for patients remaining in care (MNL ). Web Calculator The calculations of the nomogram, the prediction of mortality among patients lost to follow-up based on the meta-regression analysis described above, and the calculation of 95% CIs have been implemented on a dedicated website at http://www.iedea-sa.org. Results Case Study from Western Kenya Using the Tracing Method Box 1 and Figure 1 illustrate the correction of naïve estimates of programme-level mortality in six simple steps. The data are from the Academic Model Providing Access to Healthcare (AMPATH), a large ART programme in western Kenya [21],[22]. Patients who miss scheduled appointments are actively traced by outreach teams, and data from the outreach programme were used to estimate mortality among patients lost to follow-up. The data are based on a previous detailed analysis of two AMPATH sites [23]. The uncorrected estimate (MU ) of mortality at these two sites for the period between 1 January 2005 and 31 January 2007 was 1.7% (95% CI 1.3%–2.0%), the estimate for mortality among patients not lost to follow-up was 2.2% (95% CI 1.8%–16.6%), and the corrected estimate using the nomogram was 9.5% (Box 1). Entering the data into the web calculator at http://www.iedea-sa.org/ gives a more precise corrected estimate of programme mortality of 9.4%, with 95% CI 8.1%–10.9%. Of note, the results from the nomogram are similar to the corrected estimates that were obtained for these AMPATH sites by Yiannoutsos et al. using more complex statistical methods [23],[24]. Correction of Mortality in ART Programmes in Sub-Saharan Africa Using the Meta Method A total of 24,257 patients from 11 ART programmes in 10 countries (Botswana, Côte d'Ivoire, Kenya, Malawi, Rwanda, Senegal, South Africa, Uganda, Zambia, Zimbabwe) were included: 1,363 deaths were observed during the first year of ART. Table 1 shows the characteristics of the 11 programmes. Four programmes were located in South Africa and one programme had sites in six different countries. The number of patients treated at each site ranged from 369 to 4,705 patients. Eight sites were public (government) clinics offering ART free of charge, two were run by a nongovernmental organisation offering free ART, one was a research site offering free ART, and one site was a private clinic operating on a fee-for-service basis. Median age across all programmes was 35 years (interquartile range 30–41 years) and 16,018 patients (66.0%) were women. The median CD4 cell count at baseline ranged from 83 to 156 cells/µL across programmes. 10.1371/journal.pmed.1000390.t001 Table 1 Characteristics of ART programmes included in the study. Site Location Characteristics Patients, n Enrolment Period, Calendar Years Women, n (%) Median (IQR) Age, Years Median (IQR) Baseline CD4 Cell Count, Cells/µL Advanced clinical stage, % (95% CI)a ANRS 1215 Dakar, Senegal Research site, free treatment 369 1998–2002 201 (54%) 38 (31–44) 121 (48–217) 55% (50–60) CEPREF Abidjan, Côte d'Ivoire Public, free treatment 2,643 1998–2007 1,941 (73%) 35 (30–42) 132 (52–217) 81% (80–83) Independent Surgery Gaborone, Botswana Private clinic, fee-for-service 662 1996–2007 393 (59%) 36 (32–41) 118 (53–187) Not assessed ISS clinic Mbarara, Uganda Public, free treatment 3,713 1996–2007 2,173 (59%) 36 (31–42) 99 (35–181) 81% (79–82) Lighthouse Lilongwe, Malawi Public, free treatment since June 2004 4,705 2004–2007 2,811 (60%) 36 (30–42) 126 (54–211) 86% (85–87) Newlands Harare, Zimbabwe NGO, free treatment 857 1996–2007 585 (68%) 37 (32–44) 102 (51–159) 68% (63–72) Gugulethu Cape Town, South Africa Public, free treatment 1,896 2002–2006 1,294 (68%) 33 (29–39) 103 (50–160) 80% (78–82) Khayelitsha Cape Town, South Africa Public, free treatment 3,366 2001–2005 2,353 (70%) 32 (28–38) 87 (35–146) 90% (89–91) PHRU Soweto, South Africa Public, free treatment 528 2001–2005 373 (71%) 35 (30–41) 83 (33–139) 45% (40–49) Themba Lethu Johannesburg, South Africa Public, free treatment 3,694 1996–2006 2,491(67%) 35 (30–41) 87 (34–152) 97% (96–97) MTCT-Plus Initiative Sites in South Africa, Zambia, Kenya, Rwanda, Uganda, Côte d'Ivoire NGO, family based care, free treatment 1,824 1996–2006 1,403 (77%) 30 (27–35) 156 (93–198) 40% (38–42) a Defined as WHO stages III or IV or Centers for Disease Control and Prevention (CDC) clinical stage C. ANRS, Agence Nationale de Recherches sur le SIDA et les Hépatites Virals; CEPREF, Centre de Prise en Charge de Recherche et de Formation; IQR, interquartile range; ISS Immune Suppression Syndrome clinic; MTCT, Mother To Child Transmission; NGO, nongovernmental organisation, PHRU, Perinatal HIV Research Unit. Table 2 lists the uncorrected estimates (MU ) of programme-level mortality at 1 year (which do not consider mortality among patients lost to follow-up), the proportion of patients lost to follow-up at 1 year (r), the estimated 1-year mortality among patients remaining in care (MNL ), the predicted mortality among patients lost to follow-up (ML , obtained from the meta-regression model of Brinkhof et al. [8]), correction factor C and the corrected estimates of programme-level mortality at 1 year (MC ), which take mortality among patients lost to follow-up into account, with 95% CIs calculated as described above. Figure 3 shows the nomogram populated with the data from the 12 antiretroviral treatment programmes. 10.1371/journal.pmed.1000390.g003 Figure 3 Nomogram with data from 11 antiretroviral treatment programmes in sub-Saharan Africa. LTFU, lost to follow-up. 10.1371/journal.pmed.1000390.t002 Table 2 Uncorrected Kaplan-Meier estimates of programme-level mortality at 1 year for all patients starting ART, number of patients lost to follow-up, mortality estimates for patients retained in care, predicted mortality among patients lost to follow-up, correction factor C and corrected programme-level mortality at 1 year. Site Uncorrected Estimates of Mortality (MU ), % (95% CI) Patients Eligible for Calculation of Loss to Follow-Upa, n Patients Lost to Follow-Up, n % (r) Mortality among Patients Retained in Care (MNL ), % (95% CI) Mortality among Patients Lost to Follow-Up (ML ), % (95% CI) C Corrected Mortality (MC ), % (95% CI)b Difference between Corrected and Uncorrected Mortality, % (MC − MU ) A 2.7% (2.0–3.7) 1,132 32 (2.8%) 2.7% (2.0–3.7) 61.3% (29.3–88.8) 1.62 4.4% (3.1–5.7) 1.6% B 10.8% (8.0–14.5) 369 16 (4.3%) 11.1% (8.2–14.8) 59.8% (28.3–84.8) 1.20 13.3% (10.0–17.1) 2.4% C 6.0% (4.5–7.8) 656 28 (4.3%) 6.1% (4.6–8.0) 59.9% (28.4–84.9) 1.38 8.4% (6.3–10.7) 2.4% D 8.9% (8.0–9.9) 2,827 160 (5.7%) 9.1% (8.2–10.2) 58.5% (27.5–84.0) 1.31 11.9% (9.9–13.7) 3.0% E 9.1% (7.8–10.7) 1,074 70 (6.5%) 9.4% (8.0–11.0) 57.7% (27.0–83.4) 1.33 12.5% (10.1–15.0) 3.4% F 3.8% (2.6–5.7) 632 42 (6.6%) 4.0% (2.7–5.9) 57.5% (26.9–83.3) 1.89 7.6% (5.1–10.3) 3.7% G 11.0% (8.5–14.11) 340 28 (8.2%) 11.2% (8.7–14.4) 56.0% (25.9–82.2) 1.33 14.9% (11.4–18.8) 3.9% H 8.2% (7.2–9.4) 2,212 258 (11.7%) 8.8% (7.7–10.0) 52.5% (23.7–79.7) 1.58 13.9% (10.4–17.3) 5.7% I 3.0% (2.4–3.6) 3,083 518 (16.8%) 3.3% (2.7–4.0) 47.3% (20.6–75.7) 3.26 10.8% (6.2–15.6) 7.7% J 10.6% (9.6–11.6) 3,194 904 (28.3%) 12.0% (11.0–13.2) 36.1% (13.8–66.5) 1.59 19.1% (12.5–27.4) 8.2% K 1.3% (0.09–1.8) 1,942 558 (28.7%) 1.4% (1.0–1.9) 35.7% (13.6–66.2) 8.30 11.6% (4.9–20.0) 9.9% Eleven antiretroviral treatment programmes in sub-Saharan Africa, ordered by increasing loss to follow-up. a Patients with at least 9 months of potential follow-up who are at risk of being classified as lost to follow-up. b The corrected estimates of programme-level mortality with 95% CIs can be obtained from the web calculator available at http://www.iedea-sa.org. The 95% CI are based on Monte Carlo simulations, taking into account uncertainty in mortality among patients lost to follow-up, uncertainty in mortality among patients remaining in care and uncertainty in the proportion of patients lost to follow-up. See Text S1 for further details. The uncorrected estimates of programme-level mortality at 1 year ranged from 1.3% to 11.0%, mortality at 1 year among patients retained in care from 1.4% to 12.0%; loss to follow-up at 1 year from 2.8% to 28.7%; and correction factor C from 1.19 to 8.04. The corrected estimates of programme-level mortality ranged from 4.4% to 18.8%. Figure 4 shows a scatter plot of the uncorrected estimates of programme-level mortality (MU ) against the corrected estimates (MC ): the absolute difference between uncorrected and corrected mortality at 1 year was relatively small (1.7%–3.6%) in seven programmes, but more substantial in the remaining four programmes. The largest difference in mortality was 9.8%, in a programme with 28.7% of patients lost to follow-up at 1 year. The uncorrected estimate of programme-level mortality for this programme was 1.4% and the corrected estimate 11.2%. 10.1371/journal.pmed.1000390.g004 Figure 4 Scatterplot of uncorrected versus corrected mortality for loss to follow-up in 11 treatment programmes in sub-Saharan Africa. Discussion Regular and complete patient follow-up is essential both for the care of individual patients and the monitoring and evaluation of outcomes of ART programmes. Individual treatment decisions can then be made in the light of clinical and laboratory results and the rate of complications and mortality can be accurately estimated at the programme level. Loss to follow-up is, however, an important problem in ART programmes in resource-limited settings [6],[7],[18],[25], and poor ascertainment of deaths in patients lost to follow-up may mean that programme-level mortality, i.e. mortality of all patients starting ART, is underestimated [8],[23]. Previous analyses of treatment programmes have generally censored follow-up time at the last visit to the clinic, and patients lost to follow-up therefore contributed follow-up time but no deaths [26]–[28] (here referred to as MU ). We developed a simple nomogram that allows programme managers to read off a correction factor for a range of plausible mortality rates among patients lost to follow-up. This factor can then be used to assess to what extent the mortality observed among patients retained in care underestimates mortality at the programme level. We applied the nomogram method to ART programmes in sub-Saharan Africa to estimate programme-level mortality at 1 year after starting ART and found that the bias was modest in many programmes, because loss to follow-up was relatively low. It is clear from the shape of the nomogram that if the proportion of patients lost is low (say, below 10%), the correction factor will not be greatly affected by different assumptions for mortality among patients lost to follow-up. In programmes with fewer than 10% of patients lost, the mortality observed among patients retained in care will thus generally provide a reasonable estimate, which will underestimate programme-level mortality by only a few percentage points. Conversely, if a large proportion of patients are lost, as in the case study from western Kenya (Box 1), the bias will be substantial even if the ratio of mortality between patients lost and not lost is relatively low, and the amount of bias will increase steeply with higher ratios. Mortality among patients lost to follow-up is high: Brinkhof et al. recently reviewed studies that traced patients who became lost to ART programmes in resource-limited settings [8]. The vital status of about two-thirds of patients could be ascertained, and among these many had died: in ART programmes from sub-Saharan Africa the combined mortality from meta-analysis was 46% (95% CI 39%–54%) [8]. Patients were often lost in the first few months of ART and died soon thereafter [8].These findings are in accordance with previous analyses from the ART-LINC collaboration [27] and other treatment programmes, for example the Médecins Sans Frontières programmes in Malawi [28] and South Africa [29], or the ART programme in Mbarara, Uganda [25]. Of note, the percentage of patients lost to follow-up in these programmes was associated with estimated mortality rates in the patients lost: the estimated mortality declined from around 60% to 20% as the percentage of patients lost to the programme increased from 5% to 50%. As discussed in detail elsewhere [8], those lost to follow-up in programmes with high rates of loss to follow-up might include many low-risk patients who self-transferred to another programme, for example because of a more convenient location of the new clinic, to avoid stigma or due to work-related reasons. The negative association between the proportion lost and mortality among patients lost to follow-up will attenuate the effect of a high rate of loss to follow-up on the correction factor C. In the absence of direct evidence, the regression analysis of Brinkhof et al. [8] can be used to predict mortality among patients lost to follow-up for a given programme. The model will provide a sensible range of estimates of mortality, which can then be used in analyses to adjust overall mortality. We used this approach when applying the nomogram to the 11 ART programmes from sub-Saharan Africa. Statistical uncertainty is, however, substantial, as documented by the wide confidence intervals around the predicted mortality among patients lost to follow-up (the grey area in Figure 2), and this translated into wide confidence intervals around the corrected estimates of programme-level mortality (see last column of Table 2). In addition to the statistical uncertainty, the applicability of the results from the regression analysis must also be considered: The studies examined loss to follow-up and mortality in the first months after starting ART, and at present the regression model should therefore not be used to estimate mortality among patients lost to follow-up later on, for example in the second or third year of ART. The different determinants of loss to follow-up, including “silent transfer” to another programme (without notifying the programme where ART was initiated), financial constraints, and improving or deteriorating health will change with time since starting ART, and mortality among patients lost to programmes will change accordingly. In the present study we focused on loss to follow-up in the first year of ART, and the use of data from the review and meta-regression analysis was therefore appropriate. We stress that patterns of loss to follow-up and associated mortality may also change with calendar years, for example with increasing CD4 cell counts at the start of ART [17]. To obtain accurate estimates of mortality among all patients starting ART, programmes should therefore make an effort to trace patients lost to follow-up and ascertain their vital status. The results from these efforts should be made available to the scientific community so that the regression model can be updated and improved, for the benefit of programmes in settings where tracing of patients lost is not possible. Also note that results of studies tracing patients lost to follow-up can be used to directly correct estimates of mortality in the programme, for example by using double-sampling designs or weighted Kaplan-Meier methods [23],[30]. These methods make strong assumptions, however, and some require expert statisticians. The nomogram method has the important advantage of being simple and adapted to the field. Among the data used in the nomogram the estimated or assumed mortality among patients lost to follow-up (ML ) will always be associated with the greatest degree of statistical uncertainty and the greatest risk of bias. The estimates of mortality among patients remaining in care (MNL ) might, however, also be biased: some patients will not meet criteria for loss to follow-up and their follow-up will be censored at the last visit. Mortality rates might be higher in these patients than in otherwise identical patients whose follow-up time was not censored. In other words, we cannot exclude the possibility that some degree of “informative censoring” might introduce some bias in our estimate of mortality among patients retained in care. Finally, the nomogram can provide only a sensitivity analysis without formal estimates of uncertainty. We overcame this by creating a web calculator with a user-friendly interface, which calculates 95% CI taking into account the statistical uncertainty in the input parameters of the nomogram. ART programmes should strive to prevent loss to follow-up: interventions that prevent loss to follow-up in resource-limited settings can improve survival and are cost-effective by international criteria [31]. For example, outreach teams that routinely trace patients, combined with other measures, substantially reduce loss to follow-up [18]. Financial constraints are a common reason for not returning to the clinic [8], and mortality in programmes that charge user fees has been shown to be higher than in those offering free treatment [27]. Decentralization of services, task shifting to lay care providers, longer drug refill periods for stable patients, and provision of transport vouchers for those in need are some of the strategies that could address this issue. Strengthening of referral systems and regular exchange of information between clinics, together with patient education, could increase the recording of transfers and ensure continuity of care. Finally, when assessing outcomes, programmes should routinely report both mortality among patients retained in care at a given point in time and the proportion of patients lost to follow-up at that time. A simple nomogram can then be used to estimate mortality among all patients who started ART. Supporting Information Figure S1 Nomogram for obtaining correction factors to adjust programme-level mortality estimates, based on the observed mortality among patients not lost to follow-up (LTFU), the observed proportion of patients lost and an estimate of mortality among patients lost. Horizontal axis shows ratios from 1 to 15. (0.13 MB TIF) Click here for additional data file. Figure S2 Nomogram for obtaining correction factors to adjust programme-level mortality estimates, based on the observed mortality among patients not lost to follow-up (LTFU), the observed proportion of patients lost and an estimate of mortality among patients lost. Horizontal axis shows ratios from 1 to 50. (0.13 MB TIF) Click here for additional data file. Text S1 Statistical appendix on the calculation of 95% CIs for corrected programme-level mortality by web calculator at http://www.iedea-sa.org. (0.04 MB DOC) Click here for additional data file.
                Bookmark

                Author and article information

                Journal
                J Int AIDS Soc
                Journal of the International AIDS Society
                BioMed Central
                1758-2652
                2011
                3 November 2011
                : 14
                : 52
                Affiliations
                [1 ]Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
                [2 ]British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
                [3 ]The AIDS Support Organization (TASO), Headquarters, Kampala, Uganda
                [4 ]Centre for Infectious Disease Epidemiology and Research, University of Cape Town, South Africa
                [5 ]Centre for Infectious Diseases, Stellenbosch University, Stellenbosch, South Africa
                [6 ]Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
                [7 ]Division of Infectious Diseases, The Ottawa Hospital, Ottawa, Canada
                Article
                1758-2652-14-52
                10.1186/1758-2652-14-52
                3220631
                22050673
                825befc5-0991-4a54-8661-850faff8c67f
                Copyright ©2011 Mills et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 June 2011
                : 3 November 2011
                Categories
                Research

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article