Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Escin: a review of its anti-edematous, anti-inflammatory, and venotonic properties

      1 , 2

      Drug Design, Development and Therapy

      Dove

      blunt trauma, chronic venous insufficiency, edema, escin, pain, Reparil®

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review discusses historical and recent pharmacological and clinical data on the anti-edematous, anti-inflammatory, and venotonic properties of escin (Reparil ®). Escin, the active component of Aesculus hippocastanum, or horse chestnut, is available as orally absorbable dragées and as a transdermal gel. The anti-inflammatory and anti-edematous effects of escin have been studied over many years in pre-clinical models. More recent data confirm the anti-inflammatory properties of escin in reducing vascular permeability in inflamed tissues, thereby inhibiting edema formation. The venotonic effects of escin have been demonstrated primarily by in vitro studies of isolated human saphenous veins. The ability of escin to prevent hypoxia-induced disruption to the normal expression and distribution of platelet endothelial cell-adhesion molecule-1 may help explain its protective effect on blood vessel permeability. Escin oral dragées and transdermal gel have both demonstrated efficacy in blunt trauma injuries and in chronic venous insufficiency. Both oral escin and the transdermal gel are well tolerated.

          Related collections

          Most cited references 49

          • Record: found
          • Abstract: found
          • Article: not found

          Understanding injury mechanisms: a key component of preventing injuries in sport.

          Anterior cruciate ligament (ACL) injuries are a growing cause of concern, as these injuries can have serious consequences for the athlete with a greatly increased risk of early osteoarthrosis. Using specific training programmes, it may be possible to reduce the incidence of knee and ankle injuries. However, it is not known which programme components are the key to preventing knee and ankle injuries or how the exercises work to reduce injury risk. Our ability to design specific prevention programmes, whether through training or other preventive measures, is currently limited by an incomplete understanding of the causes of injuries. A multifactorial approach should be used to account for all the factors involved-that is, the internal and external risk factors as well as the inciting event (the injury mechanism). Although such models have been presented previously, we emphasise the need to use a comprehensive model, which accounts for the events leading to the injury situation (playing situation, player and opponent behaviour), as well as to include a description of whole body and joint biomechanics at the time of injury.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Chronic venous insufficiency.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Anti-elastase and anti-hyaluronidase activities of saponins and sapogenins from Hedera helix, Aesculus hippocastanum, and Ruscus aculeatus: factors contributing to their efficacy in the treatment of venous insufficiency.

              Triterpene and steroid saponins and sapogenins of medicinal plants (Aesculus hippocastanum L., Hedera helix L., Ruscus aculeatus L.) are claimed to be effective for the treatment/prevention of venous insufficiency. In this work we evaluated the inhibitory effects of these plant constituents on the activity of elastase and hyaluronidase, the enzyme systems involved in the turnover of the main components of the perivascular amorphous substance. The results evidence that for Hedera helix L., the sapogenins only non-competitively inhibit hyaluronidase activity in a dose-dependent fashion, showing comparable IC50 values (hederagenin IC50 = 280.4 microM; oleanolic acid IC50 = 300.2 microM); both the saponins hederacoside C and alpha-hederin are very weak inhibitors. The same behaviour is observed for serine protease porcine pancreatic elastase: the glycosides are devoid of inhibitory action, while genins are potent competitive inhibitors (oleanolic acid IC50 = 5.1 microM; hederagenin IC50 = 40.6 microM). Constituents from Aesculus hippocastanum L. show inhibitory effects only on hyaluronidase, and this activity is mainly linked to the saponin escin (IC50 = 149.9 microM), less to its genin escinol (IC50 = 1.65 mM). By contrast, ruscogenins from Ruscus aculeatus L., ineffective on hyaluronidase activity, exhibit remarkable anti-elastase activity (IC50 = 119.9 microM; competitive inhibition). The mechanism of elastase inhibition by triterpene and steroid aglycones, with a nitroanilide derivative as substrate, is discussed.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                DDDT
                dddt
                Drug Design, Development and Therapy
                Dove
                1177-8881
                27 September 2019
                2019
                : 13
                : 3425-3437
                Affiliations
                [1 ]Department of Health Science, School of Medicine, University of Catanzaro , Catanzaro, Italy
                [2 ]Operative Unit of Clinical Pharmacology and Pharmacovigilance, Azienda Ospedaliera Mater Domini , Catanzaro, Italy
                Author notes
                Correspondence: Luca GallelliOperative Unit of Clinical Pharmacology and Pharmacovigilance, Azienda Ospedaliera Mater Domini , Viale Tommaso Campanella 115, Catanzaro88100, ItalyTel +39 96 171 2322Fax +39 96 177 4424Email gallelli@unicz.it
                Article
                207720
                10.2147/DDDT.S207720
                6776292
                © 2019 Gallelli.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                Page count
                Figures: 8, References: 52, Pages: 13
                Categories
                Review

                Comments

                Comment on this article