1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Inhibition of the ALDH18A1-MYCN positive feedback loop attenuates MYCN-amplified neuroblastoma growth

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          MYCN-amplified neuroblastoma (NB) is characterized by poor prognosis, and directly targeting MYCN has proven challenging. Here, we showed that aldehyde dehydrogenase family 18 member A1 (ALDH18A1) exerts profound impacts on the proliferation, self-renewal, and tumorigenicity of NB cells and is a potential risk factor in patients with NB, especially those with MYCN amplification. Mechanistic studies revealed that ALDH18A1 could both transcriptionally and posttranscriptionally regulate MYCN expression, with MYCN reciprocally transactivating ALDH18A1 and thus forming a positive feedback loop. Using molecular docking and screening, we identified an ALDH18A1-specific inhibitor, YG1702, and demonstrated that pharmacological inhibition of ALDH18A1 was sufficient to induce a less proliferative phenotype and confer tumor regression and prolonged survival in NB xenograft models, providing therapeutic insights into the disruption of this reciprocal regulatory loop in MYCN-amplified NB.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: not found

          Neuroblastoma.

          Neuroblastoma is the most common extracranial solid tumour occurring in childhood and has a diverse clinical presentation and course depending on the tumour biology. Unique features of these neuroendocrine tumours are the early age of onset, the high frequency of metastatic disease at diagnosis and the tendency for spontaneous regression of tumours in infancy. The most malignant tumours have amplification of the MYCN oncogene (encoding a transcription factor), which is usually associated with poor survival, even in localized disease. Although transgenic mouse models have shown that MYCN overexpression can be a tumour-initiating factor, many other cooperating genes and tumour suppressor genes are still under investigation and might also have a role in tumour development. Segmental chromosome alterations are frequent in neuroblastoma and are associated with worse outcome. The rare familial neuroblastomas are usually associated with germline mutations in ALK, which is mutated in 10-15% of primary tumours, and provides a potential therapeutic target. Risk-stratified therapy has facilitated the reduction of therapy for children with low-risk and intermediate-risk disease. Advances in therapy for patients with high-risk disease include intensive induction chemotherapy and myeloablative chemotherapy, followed by the treatment of minimal residual disease using differentiation therapy and immunotherapy; these have improved 5-year overall survival to 50%. Currently, new approaches targeting the noradrenaline transporter, genetic pathways and the tumour microenvironment hold promise for further improvements in survival and long-term quality of life.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the Children's Oncology Group.

            In the Children's Oncology Group, risk group assignment for neuroblastoma is critical for therapeutic decisions, and patients are stratified by International Neuroblastoma Staging System stage, MYCN status, ploidy, Shimada histopathology, and diagnosis age. Age less than 365 days has been associated with favorable outcome, but recent studies suggest that older age cutoff may improve prognostic precision. To identify the optimal age cutoff, we retrospectively analyzed data from the Pediatric Oncology Group biology study 9047 and Children's Cancer Group studies 321p1-p4, 3881, 3891, and B973 on 3,666 patients (1986 to 2001) with documented ages and follow-up data. Twenty-seven separate analyses, one for each different age cutoff (adjusting for MYCN and stage), tested age influence on outcome. The cutoff that maximized outcome difference between younger and older patients was selected. Thirty-seven percent of patients were younger than 365 days, and 64% were > or = 365 days old (4-year event-free survival [EFS] rate +/- SE: 83% +/- 1% [n = 1,339] and 45% +/- 1% [n = 2,327], respectively; P or = 460 days old (4-year EFS rate +/- SE: 82% +/- 1% [n = 1,589] and 42% +/- 1% [n = 2,077], respectively; P < .0001). Using a 460-day cutoff (assuming stage 4, MYCN-amplified patients remain high-risk), 5% of patients (365 to 460 days: 4-year EFS 92% +/- 3%; n = 135) fell into a lower risk group. The prognostic contribution of age to outcome is continuous in nature. Within clinically relevant risk stratification, statistical support exists for an age cutoff of 460 days.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Asymmetric Numb distribution is critical for asymmetric cell division of mouse cerebral cortical stem cells and neuroblasts.

              Stem cells and neuroblasts derived from mouse embryos undergo repeated asymmetric cell divisions, generating neural lineage trees similar to those of invertebrates. In Drosophila, unequal distribution of Numb protein during mitosis produces asymmetric cell divisions and consequently diverse neural cell fates. We investigated whether a mouse homologue m-numb had a similar role during mouse cortical development. Progenitor cells isolated from the embryonic mouse cortex were followed as they underwent their next cell division in vitro. Numb distribution was predominantly asymmetric during asymmetric cell divisions yielding a beta-tubulin III(-) progenitor and a beta-tubulin III(+) neuronal cell (P/N divisions) and predominantly symmetric during divisions producing two neurons (N/N divisions). Cells from the numb knockout mouse underwent significantly fewer asymmetric P/N divisions compared to wild type, indicating a causal role for Numb. When progenitor cells derived from early (E10) cortex undergo P/N divisions, both daughters express the progenitor marker Nestin, indicating their immature state, and Numb segregates into the P or N daughter with similar frequency. In contrast, when progenitor cells derived from later E13 cortex (during active neurogenesis in vivo) undergo P/N divisions they produce a Nestin(+) progenitor and a Nestin(-) neuronal daughter, and Numb segregates preferentially into the neuronal daughter. Thus during mouse cortical neurogenesis, as in Drosophila neurogenesis, asymmetric segregation of Numb could inhibit Notch activity in one daughter to induce neuronal differentiation. At terminal divisions generating two neurons, Numb was symmetrically distributed in approximately 80% of pairs and asymmetrically in 20%. We found a significant association between Numb distribution and morphology: most sisters of neuron pairs with symmetric Numb were similar and most with asymmetric Numb were different. Developing cortical neurons with Numb had longer processes than those without. Numb is expressed by neuroblasts and stem cells and can be asymmetrically segregated by both. These data indicate Numb has an important role in generating asymmetric cell divisions and diverse cell fates during mouse cortical development.
                Bookmark

                Author and article information

                Contributors
                Journal
                Science Translational Medicine
                Sci. Transl. Med.
                American Association for the Advancement of Science (AAAS)
                1946-6234
                1946-6242
                February 19 2020
                February 19 2020
                February 19 2020
                February 19 2020
                : 12
                : 531
                : eaax8694
                Affiliations
                [1 ]Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
                [2 ]Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
                [3 ]Key Laboratory of Tumor Immunopathology of the Ministry of Education, Third Military Medical University (Army Medical University), Chongqing 400038, China.
                Article
                10.1126/scitranslmed.aax8694
                32075946
                8275182a-cc7b-486f-8a85-954d8edad442
                © 2020

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article