7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparing deep neural networks against humans: object recognition when the signal gets weaker

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human visual object recognition is typically rapid and seemingly effortless, as well as largely independent of viewpoint and object orientation. Until very recently, animate visual systems were the only ones capable of this remarkable computational feat. This has changed with the rise of a class of computer vision algorithms called deep neural networks (DNNs) that achieve human-level classification performance on object recognition tasks. Furthermore, a growing number of studies report similarities in the way DNNs and the human visual system process objects, suggesting that current DNNs may be good models of human visual object recognition. Yet there clearly exist important architectural and processing differences between state-of-the-art DNNs and the primate visual system. The potential behavioural consequences of these differences are not well understood. We aim to address this issue by comparing human and DNN generalisation abilities towards image degradations. We find the human visual system to be more robust to image manipulations like contrast reduction, additive noise or novel eidolon-distortions. In addition, we find progressively diverging classification error-patterns between man and DNNs when the signal gets weaker, indicating that there may still be marked differences in the way humans and current DNNs perform visual object recognition. We envision that our findings as well as our carefully measured and freely available behavioural datasets provide a new useful benchmark for the computer vision community to improve the robustness of DNNs and a motivation for neuroscientists to search for mechanisms in the brain that could facilitate this robustness.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: not found
          • Book Chapter: not found

          Microsoft COCO: Common Objects in Context

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Speed of processing in the human visual system.

            How long does it take for the human visual system to process a complex natural image? Subjectively, recognition of familiar objects and scenes appears to be virtually instantaneous, but measuring this processing time experimentally has proved difficult. Behavioural measures such as reaction times can be used, but these include not only visual processing but also the time required for response execution. However, event-related potentials (ERPs) can sometimes reveal signs of neural processing well before the motor output. Here we use a go/no-go categorization task in which subjects have to decide whether a previously unseen photograph, flashed on for just 20 ms, contains an animal. ERP analysis revealed a frontal negativity specific to no-go trials that develops roughly 150 ms after stimulus onset. We conclude that the visual processing needed to perform this highly demanding task can be achieved in under 150 ms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              How does the brain solve visual object recognition?

              Mounting evidence suggests that 'core object recognition,' the ability to rapidly recognize objects despite substantial appearance variation, is solved in the brain via a cascade of reflexive, largely feedforward computations that culminate in a powerful neuronal representation in the inferior temporal cortex. However, the algorithm that produces this solution remains poorly understood. Here we review evidence ranging from individual neurons and neuronal populations to behavior and computational models. We propose that understanding this algorithm will require using neuronal and psychophysical data to sift through many computational models, each based on building blocks of small, canonical subnetworks with a common functional goal. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                2017-06-21
                Article
                1706.06969
                827d7c99-c790-4e4f-9cf4-fefe623a91f5

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                cs.CV

                Computer vision & Pattern recognition
                Computer vision & Pattern recognition

                Comments

                Comment on this article