14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Kinetic Analysis of the Early Signaling Steps of the Human Chemokine Receptor CXCR4

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          G protein–coupled receptors (GPCRs) are biologic switches that transduce extracellular stimuli into intracellular responses in the cell. Temporally resolving GPCR transduction pathways is key to understanding how cell signaling occurs. Here, we investigate the kinetics and dynamics of the activation and early signaling steps of the CXC chemokine receptor (CXCR) 4 in response to its natural ligands CXC chemokine ligand (CXCL) 12 and macrophage migration inhibitory factor (MIF), using Förster resonance energy transfer–based approaches. We show that CXCR4 presents a multifaceted response to CXCL12, with receptor activation (≈0.6 seconds) followed by a rearrangement in the receptor/G protein complex (≈1 seconds), a slower dimer rearrangement (≈1.7 seconds), and prolonged G protein activation (≈4 seconds). In comparison, MIF distinctly modulates every step of the transduction pathway, indicating distinct activation mechanisms and reflecting the different pharmacological properties of these two ligands. Our study also indicates that CXCR4 exhibits some degree of ligand-independent activity, a relevant feature for drug development.

          SIGNIFICANCE STATEMENT

          The CXC chemokine ligand (CXCL) 12/CXC chemokine receptor (CXCR) 4 axis represents a well-established therapeutic target for cancer treatment. We demonstrate that CXCR4 exhibits a multifaceted response that involves dynamic receptor dimer rearrangements and that is kinetically embedded between receptor–G protein complex rearrangements and G protein activation. The alternative endogenous ligand macrophage migration inhibitory factor behaves opposite to CXCL12 in each assay studied and does not lead to G protein activation. This detailed understanding of the receptor activation may aid in the development of more specific drugs against this target.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists.

          Chemokine receptors are critical regulators of cell migration in the context of immune surveillance, inflammation, and development. The G protein-coupled chemokine receptor CXCR4 is specifically implicated in cancer metastasis and HIV-1 infection. Here we report five independent crystal structures of CXCR4 bound to an antagonist small molecule IT1t and a cyclic peptide CVX15 at 2.5 to 3.2 angstrom resolution. All structures reveal a consistent homodimer with an interface including helices V and VI that may be involved in regulating signaling. The location and shape of the ligand-binding sites differ from other G protein-coupled receptors and are closer to the extracellular surface. These structures provide new clues about the interactions between CXCR4 and its natural ligand CXCL12, and with the HIV-1 glycoprotein gp120.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment.

            The cytokine macrophage migration inhibitory factor (MIF) plays a critical role in inflammatory diseases and atherogenesis. We identify the chemokine receptors CXCR2 and CXCR4 as functional receptors for MIF. MIF triggered G(alphai)- and integrin-dependent arrest and chemotaxis of monocytes and T cells, rapid integrin activation and calcium influx through CXCR2 or CXCR4. MIF competed with cognate ligands for CXCR4 and CXCR2 binding, and directly bound to CXCR2. CXCR2 and CD74 formed a receptor complex, and monocyte arrest elicited by MIF in inflamed or atherosclerotic arteries involved both CXCR2 and CD74. In vivo, Mif deficiency impaired monocyte adhesion to the arterial wall in atherosclerosis-prone mice, and MIF-induced leukocyte recruitment required Il8rb (which encodes Cxcr2). Blockade of Mif but not of canonical ligands of Cxcr2 or Cxcr4 in mice with advanced atherosclerosis led to plaque regression and reduced monocyte and T-cell content in plaques. By activating both CXCR2 and CXCR4, MIF displays chemokine-like functions and acts as a major regulator of inflammatory cell recruitment and atherogenesis. Targeting MIF in individuals with manifest atherosclerosis can potentially be used to treat this condition.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein.

              G protein-coupled receptors (GPCRs) respond to a diverse array of ligands, mediating cellular responses to hormones and neurotransmitters, as well as the senses of smell and taste. The structures of the GPCR rhodopsin and several G proteins have been determined by x-ray crystallography, yet the organization of the signaling complex between GPCRs and G proteins is poorly understood. The observations that some GPCRs are obligate heterodimers, and that many GPCRs form both homo- and heterodimers, has led to speculation that GPCR dimers may be required for efficient activation of G proteins. However, technical limitations have precluded a definitive analysis of G protein coupling to monomeric GPCRs in a biochemically defined and membrane-bound system. Here we demonstrate that a prototypical GPCR, the beta2-adrenergic receptor (beta2AR), can be incorporated into a reconstituted high-density lipoprotein (rHDL) phospholipid bilayer particle together with the stimulatory heterotrimeric G protein, Gs. Single-molecule fluorescence imaging and FRET analysis demonstrate that a single beta2AR is incorporated per rHDL particle. The monomeric beta2AR efficiently activates Gs and displays GTP-sensitive allosteric ligand-binding properties. These data suggest that a monomeric receptor in a lipid bilayer is the minimal functional unit necessary for signaling, and that the cooperativity of agonist binding is due to G protein association with a receptor monomer and not receptor oligomerization.
                Bookmark

                Author and article information

                Journal
                Mol Pharmacol
                Mol. Pharmacol
                molpharm
                Mol Pharmacol
                MolPharm
                Molecular Pharmacology
                The American Society for Pharmacology and Experimental Therapeutics (Bethesda, MD )
                0026-895X
                1521-0111
                August 2020
                August 2020
                August 2020
                : 98
                : 2
                : 72-87
                Affiliations
                Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), University Hospital Jena, University of Jena, Jena, Germany (C.P.-V., C.H.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.-V., A.I., M.J.L., C.H.); Max-Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Vrije Universiteit, Amsterdam, The Netherlands (A.Z., M.J.S.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Medical School, Queen’s Medical Centre, Nottingham, United Kingdom (B.C., L.E.K., S.J.H.); and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., L.E.K., S.J.H.)
                Author notes
                Address correspondence to: Dr. Carsten Hoffmann, Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), University Hospital Jena, University of Jena, Hans-Knöll-Str. 2, D-07745, Jena, Germany. E-mail: carsten.hoffmann@ 123456med.uni-jena.de
                Author information
                https://orcid.org/0000-0003-2713-0238
                Article
                MOL_118448
                10.1124/mol.119.118448
                7330677
                32474443
                828e0671-3fef-4297-b0ba-4c63a1e097c4
                Copyright © 2020 by The Author(s)

                This is an open access article distributed under the CC BY-NC Attribution 4.0 International license.

                History
                : 07 October 2019
                : 06 May 2020
                Page count
                Pages: 16
                Categories
                Articles

                Comments

                Comment on this article