44
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Models Derived from In Vitro Analyses of Spleen, Liver, and Lung Leukocyte Functions Predict Vaccine Efficacy against the Francisella tularensis Live Vaccine Strain (LVS)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Currently, there are no licensed vaccines and no correlates of protection against Francisella tularensis, which causes tularemia. We recently demonstrated that measuring in vitro control of intramacrophage bacterial growth by murine F. tularensis-immune splenocytes, as well as transcriptional analyses, discriminated Francisella vaccines of different efficacies. Further, we identified potential correlates of protection against systemic challenge. Here, we extended this approach by studying leukocytes derived from lungs and livers of mice immunized by parenteral and respiratory routes with F. tularensis vaccines. Liver and lung leukocytes derived from intradermally and intranasally vaccinated mice controlled in vitro Francisella Live Vaccine Strain (LVS) intramacrophage replication in patterns similar to those of splenocytes. Gene expression analyses of potential correlates also revealed similar patterns in liver cells and splenocytes. In some cases (e.g., tumor necrosis factor alpha [TNF-α], interleukin 22 [IL-22], and granulocyte-macrophage colony-stimulating factor [GM-CSF]), liver cells exhibited even higher relative gene expression, whereas fewer genes exhibited differential expression in lung cells. In contrast with their strong ability to control LVS replication, splenocytes from intranasally vaccinated mice expressed few genes with a hierarchy of expression similar to that of splenocytes from intradermally vaccinated mice. Thus, the relative levels of gene expression vary between cell types from different organs and by vaccination route. Most importantly, because studies comparing cell sources and routes of vaccination supported the predictive validity of this coculture and gene quantification approach, we combined in vitro LVS replication with gene expression data to develop analytical models that discriminated between vaccine groups and successfully predicted the degree of vaccine efficacy. Thus, this strategy remains a promising means of identifying and quantifying correlative T cell responses.

          IMPORTANCE

          Identifying and quantifying correlates of protection is especially challenging for intracellular bacteria, including Francisella tularensis. F. tularensis is classified as a category A bioterrorism agent, and no vaccines have been licensed in the United States, but tularemia is a rare disease. Therefore, clinical trials to test promising vaccines are impractical. In this report, we further evaluated a novel approach to developing correlates by assessing T cell immune responses in lungs and livers of differentially vaccinated mice; these nonprofessional immune tissues are colonized by Francisella. The relative degree of vaccine efficacy against systemic challenge was reflected by the ability of immune T cells, particularly liver T cells, to control the intramacrophage replication of bacteria in vitro and by relative gene expression of several immunological mediators. We therefore developed analytical models that combined bacterial replication data and gene expression data. Several resulting models provided excellent discrimination between vaccines of different efficacies.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major.

          CD4+ T cells have a crucial role in mediating protection against a variety of pathogens through production of specific cytokines. However, substantial heterogeneity in CD4+ T-cell cytokine responses has limited the ability to define an immune correlate of protection after vaccination. Here, using multiparameter flow cytometry to assess the immune responses after immunization, we show that the degree of protection against Leishmania major infection in mice is predicted by the frequency of CD4+ T cells simultaneously producing interferon-gamma, interleukin-2 and tumor necrosis factor. Notably, multifunctional effector cells generated by all vaccines tested are unique in their capacity to produce high amounts of interferon-gamma. These data show that the quality of a CD4+ T-cell cytokine response can be a crucial determinant in whether a vaccine is protective, and may provide a new and useful prospective immune correlate of protection for vaccines based on T-helper type 1 (TH1) cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature.

            To quantify the efficacy of BCG vaccine against tuberculosis (TB). MEDLINE with index terms BCG vaccine, tuberculosis, and human. Experts from the Centers for Disease Control and Prevention and the World Health Organization, among others, provided lists of all known studies. A total of 1264 articles or abstracts were reviewed for details on BCG vaccination, concurrent vaccinated and unvaccinated groups, and TB outcome; 70 articles were reviewed in depth for method of vaccine allocation used to create comparable groups, equal surveillance and follow-up for recipient and concurrent control groups, and outcome measures of TB cases and/or deaths. Fourteen prospective trials and 12 case-control studies were included in the analysis. We recorded study design, age range of study population, number of patients enrolled, efficacy of vaccine, and items to assess the potential for bias in study design and diagnosis. At least two readers independently extracted data and evaluated validity. The relative risk (RR) or odds ratio (OR) of TB provided the measure of vaccine efficacy that we analyzed. The protective effect was then computed by 1-RR or 1-OR. A random-effects model estimated a weighted average RR or OR from those provided by the trials or case-control studies. In the trials, the RR of TB was 0.49 (95% confidence interval [CI], 0.34 to 0.70) for vaccine recipients compared with nonrecipients (protective effect of 51%). In the case-control studies, the OR for TB was 0.50 (95% CI, 0.39 to 0.64), or a 50% protective effect. Seven trials reporting tuberculous deaths showed a protective effect from BCG vaccine of 71% (RR, 0.29; 95% CI, 0.16 to 0.53), and five studies reporting on meningitis showed a protective effect from BCG vaccine of 64% (OR, 0.36; 95% CI, 0.18 to 0.70). Geographic latitude of the study site and study validity score explained 66% of the heterogeneity among trials in a random-effects regression model. On average, BCG vaccine significantly reduces the risk of TB by 50%. Protection is observed across many populations, study designs, and forms of TB. Age at vaccination did not enhance predictiveness of BCG efficacy. Protection against tuberculous death, meningitis, and disseminated disease is higher than for total TB cases, although this result may reflect reduced error in disease classification rather than greater BCG efficacy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multifunctional CD4 cells expressing gamma interferon and perforin mediate protection against lethal influenza virus infection.

              CD4 effectors generated in vitro can promote survival against a highly pathogenic influenza virus via an antibody-independent mechanism involving class II-restricted, perforin-mediated cytotoxicity. However, it is not known whether CD4 cells activated during influenza virus infection can acquire cytolytic activity that contributes to protection against lethal challenge. CD4 cells isolated from the lungs of infected mice were able to confer protection against a lethal dose of H1N1 influenza virus A/Puerto Rico 8/34 (PR8). Infection of BALB/c mice with PR8 induced a multifunctional CD4 population with proliferative capacity and ability to secrete interleukin-2 (IL-2) and tumor necrosis factor alpha (TNF-α) in the draining lymph node (DLN) and gamma interferon (IFN-γ) and IL-10 in the lung. IFN-γ-deficient CD4 cells produced larger amounts of IL-17 and similar levels of TNF-α, IL-10, and IL-2 compared to wild-type (WT) CD4 cells. Both WT and IFN-γ(-/-) CD4 cells exhibit influenza virus-specific cytotoxicity; however, IFN-γ-deficient CD4 cells did not promote recovery after lethal infection as effectively as WT CD4 cells. PR8 infection induced a population of cytolytic CD4 effectors that resided in the lung but not the DLN. These cells expressed granzyme B (GrB) and required perforin to lyse peptide-pulsed targets. Lethally infected mice given influenza virus-specific CD4 cells deficient in perforin showed greater weight loss and a slower time to recovery than mice given WT influenza virus-specific CD4 cells. Taken together, these data strengthen the concept that CD4 T cell effectors are broadly multifunctional with direct roles in promoting protection against lethal influenza virus infection.
                Bookmark

                Author and article information

                Journal
                mBio
                MBio
                mbio
                mbio
                mBio
                mBio
                American Society of Microbiology (1752 N St., N.W., Washington, DC )
                2150-7511
                8 April 2014
                Mar-Apr 2014
                : 5
                : 2
                : e00936-13
                Affiliations
                [ a ]Laboratory of Mycobacterial Diseases and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, Maryland, USA
                [ b ]Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
                [ c ]Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
                Author notes
                Address correspondence to Roberto De Pascalis, roberto.depascalis@ 123456fda.hhs.gov .
                [*]

                Present address: Reagan-Udall Foundation, Washington, DC, USA.

                Invited Editor Dennis Kasper, Harvard Medical School Editor Eric Rubin, Harvard School of Public Health

                Article
                mBio00936-13
                10.1128/mBio.00936-13
                3993856
                24713322
                82945948-dad8-455c-8e6c-6be2277cfcf0
                Copyright © 2014 De Pascalis et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 1 November 2013
                : 6 March 2014
                Page count
                Pages: 12
                Categories
                Research Article
                Custom metadata
                March/April 2014

                Life sciences
                Life sciences

                Comments

                Comment on this article