+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Role of Glia in the Regulation of Gonadotropin-Releasing Hormone Neuronal Activity and Secretion

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Gonadotropin-releasing hormone (GnRH) neurons are the final common pathway for the central control of reproduction. The coordinated and timely activation of these hypothalamic neurons, which determines sexual development and adult reproductive function, lies under the tight control of a complex array of excitatory and inhibitory transsynaptic inputs. In addition, research conducted over the past 20 years has unveiled the major contribution of glial cells to the control of GnRH neurons. Glia use a variety of molecular and cellular strategies to modulate GnRH neuronal function both at the level of their cell bodies and at their nerve terminals. These mechanisms include the secretion of bioactive molecules that exert paracrine effects on GnRH neurons, juxtacrine interactions between glial cells and GnRH neurons via adhesive molecules and the morphological plasticity of the glial coverage of GnRH neurons. It now appears that glial cells are integral components, along with upstream neuronal networks, of the central control of GnRH neuronal function. This review attempts to summarize our current knowledge of the mechanisms used by glial cells to control GnRH neuronal activity and secretion.

          Related collections

          Most cited references 84

          • Record: found
          • Abstract: found
          • Article: not found

          Uniquely hominid features of adult human astrocytes.

          Defining the microanatomic differences between the human brain and that of other mammals is key to understanding its unique computational power. Although much effort has been devoted to comparative studies of neurons, astrocytes have received far less attention. We report here that protoplasmic astrocytes in human neocortex are 2.6-fold larger in diameter and extend 10-fold more GFAP (glial fibrillary acidic protein)-positive primary processes than their rodent counterparts. In cortical slices prepared from acutely resected surgical tissue, protoplasmic astrocytes propagate Ca(2+) waves with a speed of 36 microm/s, approximately fourfold faster than rodent. Human astrocytes also transiently increase cystosolic Ca(2+) in response to glutamatergic and purinergic receptor agonists. The human neocortex also harbors several anatomically defined subclasses of astrocytes not represented in rodents. These include a population of astrocytes that reside in layers 5-6 and extend long fibers characterized by regularly spaced varicosities. Another specialized type of astrocyte, the interlaminar astrocyte, abundantly populates the superficial cortical layers and extends long processes without varicosities to cortical layers 3 and 4. Human fibrous astrocytes resemble their rodent counterpart but are larger in diameter. Thus, human cortical astrocytes are both larger, and structurally both more complex and more diverse, than those of rodents. On this basis, we posit that this astrocytic complexity has permitted the increased functional competence of the adult human brain.
            • Record: found
            • Abstract: found
            • Article: not found

            Nitric oxide activates cyclooxygenase enzymes.

            We have evaluated the role of nitric oxide (NO) on the activity of the constitutive and induced forms of cyclooxygenase (COX; COX-1 and COX-2, respectively). Induction of NO synthase (NOS) and COX (COX-2) in the mouse macrophage cell line RAW264.7 by Escherichia coli lipopolysaccharide (1 microgram/ml, 18 h) caused an increase in the release of nitrite (NO2-) and prostaglandin E2 (PGE2), products of NOS and COX, respectively. Production of both NO2- and PGE2 was blocked by the NOS inhibitors NG-monomethyl-L-arginine or aminoguanidine. The effects of NG-monomethyl-L-arginine or aminoguanidine were reversed by coincubation with L-Arg, the precursor for NO synthesis, but not by D-Arg. RAW264.7 cells stimulated for 18 h with lipopolysaccharide in L-Arg-free medium (to reduce NO generation by the endogenous NOS pathway) failed to release NO2- and accumulated at least 4-fold less PGE2 when compared to cells in the presence of L-Arg. PGE2 production elicited by a 15-min arachidonic acid treatment of lipopolysaccharide-induced RAW264.7 cells in L-Arg-deficient medium was decreased 3-fold when compared to the release obtained with cells induced in medium containing L-Arg. To examine the NO activation of the induced form of COX in the absence of an endogenous L-Arg, human fetal fibroblasts were first stimulated for 18 h with interleukin 1 beta. These cells released PGE2 but not NO2-, consistent with the induction of COX but not NOS in the fibroblast. Exogenous NO either as a gaseous solution or released by a NO donor, sodium nitroprusside or glyceryl trinitrate, increased COX activity in the interleukin 1 beta-stimulated fibroblasts by 5-fold; these effects were abolished by coincubation with hemoglobin (10 microM), which binds and inactivates NO, but not by methylene blue, an inhibitor of the soluble guanylate cyclase. Furthermore, sodium nitroprusside (0.25-1 mM) increased arachidonic acid-stimulated PGE2 production by murine recombinant COX-1 and COX-2. These results demonstrate that NO enhances COX activity through a mechanism independent of cGMP and suggest that, in conditions in which both the NOS and COX systems are present, there is an NO-mediated increase in the production of proinflammatory prostaglandins that may result in an exacerbated inflammatory response. The data suggest that NO directly interacts with COX to cause an increase in the enzymatic activity.
              • Record: found
              • Abstract: found
              • Article: not found

              Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain.

              The identification of neural stem and progenitor cells (NPCs) by in vivo brain imaging could have important implications for diagnostic, prognostic, and therapeutic purposes. We describe a metabolic biomarker for the detection and quantification of NPCs in the human brain in vivo. We used proton nuclear magnetic resonance spectroscopy to identify and characterize a biomarker in which NPCs are enriched and demonstrated its use as a reference for monitoring neurogenesis. To detect low concentrations of NPCs in vivo, we developed a signal processing method that enabled the use of magnetic resonance spectroscopy for the analysis of the NPC biomarker in both the rodent brain and the hippocampus of live humans. Our findings thus open the possibility of investigating the role of NPCs and neurogenesis in a wide variety of human brain disorders.

                Author and article information

                S. Karger AG
                July 2013
                28 May 2013
                : 98
                : 1
                : 1-15
                INSERM, Jean-Pierre Aubert Research Center, Development and Plasticity of the Postnatal Brain, Unit 837, and UDSL, School of Medicine, Lille, France
                Author notes
                *Ariane Sharif or Vincent Prevot, INSERM U837, Place de Verdun, FR-59045 Lille Cedex (France), E-Mail ariane.sharif@inserm.fr or vincent.prevot@inserm.fr
                351867 Neuroendocrinology 2013;98:1-15
                © 2013 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 5, Pages: 15
                At the Cutting Edge


                Comment on this article