28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exosomes taken up by neurons hijack the endosomal pathway to spread to interconnected neurons

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In Alzheimer disease and related disorders, the microtubule-associated protein tau aggregates and forms cytoplasmic lesions that impair neuronal physiology at many levels. In addition to affecting the host neuron, tau aggregates also spread to neighboring, recipient cells where the misfolded tau aggregates, in a manner similar to prions, actively corrupt the proper folding of soluble tau, and thereby impair cellular functions. One vehicle for the transmission of tau aggregates are secretory nanovesicles known as exosomes. Here, we established a simple model of a neuronal circuit using a microfluidics culture system in which hippocampal neurons A and B were seeded into chambers 1 and 2, respectively, extending axons via microgrooves in both directions and thereby interconnecting. This system served to establish two models to track exosome spreading. In the first model, we labeled the exosomal membrane by coupling tetraspanin CD9 with either a green or red fluorescent tag. This allowed us to reveal that interconnected neurons exchange exosomes only when their axons extend in close proximity. In the second model, we added exosomes isolated from the brains of tau transgenic rTg4510 mice (i.e. exogenous, neuron A-derived) to neurons in chamber 1 (neuron B) interconnected with neuron C in chamber 2. This allowed us to demonstrate that a substantial fraction of the exogenous exosomes were internalized by neuron B and passed then on to neuron C. This transportation from neuron B to C was achieved by a mechanism that is consistent with the hijacking of secretory endosomes by the exogenous exosomes, as revealed by confocal, super-resolution and electron microscopy. Together, these findings suggest that fusion events involving the endogenous endosomal secretory machinery increase the pathogenic potential and the radius of action of pathogenic cargoes carried by exogenous exosomes.

          Electronic supplementary material

          The online version of this article (10.1186/s40478-018-0514-4) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Proteopathic tau seeding predicts tauopathy in vivo.

          Transcellular propagation of protein aggregates, or proteopathic seeds, may drive the progression of neurodegenerative diseases in a prion-like manner. In tauopathies such as Alzheimer's disease, this model predicts that tau seeds propagate pathology through the brain via cell-cell transfer in neural networks. The critical role of tau seeding activity is untested, however. It is unknown whether seeding anticipates and correlates with subsequent development of pathology as predicted for a causal agent. One major limitation has been the lack of a robust assay to measure proteopathic seeding activity in biological specimens. We engineered an ultrasensitive, specific, and facile FRET-based flow cytometry biosensor assay based on expression of tau or synuclein fusions to CFP and YFP, and confirmed its sensitivity and specificity to tau (∼ 300 fM) and synuclein (∼ 300 pM) fibrils. This assay readily discriminates Alzheimer's disease vs. Huntington's disease and aged control brains. We then carried out a detailed time-course study in P301S tauopathy mice, comparing seeding activity versus histological markers of tau pathology, including MC1, AT8, PG5, and Thioflavin S. We detected robust seeding activity at 1.5 mo, >1 mo before the earliest histopathological stain. Proteopathic tau seeding is thus an early and robust marker of tauopathy, suggesting a proximal role for tau seeds in neurodegeneration.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light.

            Green fluorescent protein (GFP) and GFP-like proteins represent invaluable genetically encoded fluorescent probes. In the last few years a new class of photoactivatable fluorescent proteins (PAFPs) capable of pronounced light-induced spectral changes have been developed. Except for tetrameric KFP1 (ref. 4), all known PAFPs, including PA-GFP, Kaede, EosFP, PS-CFP, Dronpa, PA-mRFP1 and KikGR require light in the UV-violet spectral region for activation through one-photon excitation--such light can be phototoxic to some biological systems. Here, we report a monomeric PAFP, Dendra, derived from octocoral Dendronephthya sp. and capable of 1,000- to 4,500-fold photoconversion from green to red fluorescent states in response to either visible blue or UV-violet light. Dendra represents the first PAFP, which is simultaneously monomeric, efficiently matures at 37 degrees C, demonstrates high photostability of the activated state, and can be photoactivated by a common, marginally phototoxic, 488-nm laser line. We demonstrate the suitability of Dendra for protein labeling and tracking to quantitatively study dynamics of fibrillarin and vimentin in mammalian cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless.

              Wnts play pivotal roles during development and in the mature nervous system. However, the mechanism by which Wnts traffic between cells has remained elusive. Here we demonstrate a mechanism of Wnt transmission through release of exosome-like vesicles containing the Wnt-binding protein Evenness Interrupted/Wntless/Sprinter (Evi/Wls/Srt). We show that at the Drosophila larval neuromuscular junction (NMJ), presynaptic vesicular release of Evi is required for the secretion of the Wnt, Wingless (Wg). We also show that Evi acts cell-autonomously in the postsynaptic Wnt-receiving cell to target dGRIP, a Wg-receptor-interacting protein, to postsynaptic sites. Upon Evi loss of function, dGRIP is not properly targeted to synaptic sites, interfering with postsynaptic Wnt signal transduction. These findings uncover a previously unknown cellular mechanism by which a secreted Wnt is transported across synapses by Evi-containing vesicles and reveal trafficking functions of Evi in both the Wnt-producing and the Wnt-receiving cells. For a video summary of this article, see the PaperFlick file with the Supplemental Data available online.
                Bookmark

                Author and article information

                Contributors
                +61-7-334 , 66329 , j.goetz@uq.edu.au
                Journal
                Acta Neuropathol Commun
                Acta Neuropathol Commun
                Acta Neuropathologica Communications
                BioMed Central (London )
                2051-5960
                15 February 2018
                15 February 2018
                2018
                : 6
                : 10
                Affiliations
                [1 ]ISNI 0000 0000 9320 7537, GRID grid.1003.2, Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), , The University of Queensland, ; Brisbane, QLD 4072 Australia
                [2 ]ISNI 0000 0000 9320 7537, GRID grid.1003.2, Queensland Brain Institute (QBI), , The University of Queensland, ; Brisbane, QLD 4072 Australia
                Author information
                http://orcid.org/0000-0001-8501-7896
                Article
                514
                10.1186/s40478-018-0514-4
                5815204
                29448966
                829b4a89-d7da-441e-8e21-f1f1408a04dc
                © The Author(s). 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 15 January 2018
                : 8 February 2018
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100000923, Australian Research Council;
                Award ID: DP160103812
                Award ID: LE130100078
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100000925, National Health and Medical Research Council;
                Award ID: GNT1037746
                Award ID: GNT1127999
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2018

                alzheimer,tau,spreading, exosomes,endosomes,protein aggregates,organelle fusion,axonal transport

                Comments

                Comment on this article