46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Draft Genome Sequence of Broad-Spectrum Antifungal Bacterium Burkholderia gladioli Strain NGJ1, Isolated from Healthy Rice Seeds

      brief-report
      , , ,
      Genome Announcements
      American Society for Microbiology

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We report here the draft genome sequence of Burkholderia gladioli strain NGJ1. The strain was isolated from healthy rice seeds and exhibits broad-spectrum antifungal activity against several agriculturally important pathogens, including Rhizoctonia solani, Magnaporthe oryzae, Venturia inaequalis, and Fusarium oxysporum.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: not found

          An Integrated Pipeline for de Novo Assembly of Microbial Genomes

          Remarkable advances in DNA sequencing technology have created a need for de novo genome assembly methods tailored to work with the new sequencing data types. Many such methods have been published in recent years, but assembling raw sequence data to obtain a draft genome has remained a complex, multi-step process, involving several stages of sequence data cleaning, error correction, assembly, and quality control. Successful application of these steps usually requires intimate knowledge of a diverse set of algorithms and software. We present an assembly pipeline called A5 (Andrew And Aaron's Awesome Assembly pipeline) that simplifies the entire genome assembly process by automating these stages, by integrating several previously published algorithms with new algorithms for quality control and automated assembly parameter selection. We demonstrate that A5 can produce assemblies of quality comparable to a leading assembly algorithm, SOAPdenovo, without any prior knowledge of the particular genome being assembled and without the extensive parameter tuning required by the other assembly algorithm. In particular, the assemblies produced by A5 exhibit 50% or more reduction in broken protein coding sequences relative to SOAPdenovo assemblies. The A5 pipeline can also assemble Illumina sequence data from libraries constructed by the Nextera (transposon-catalyzed) protocol, which have markedly different characteristics to mechanically sheared libraries. Finally, A5 has modest compute requirements, and can assemble a typical bacterial genome on current desktop or laptop computer hardware in under two hours, depending on depth of coverage.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Systematic Identification of Gene Families for Use as “Markers” for Phylogenetic and Phylogeny-Driven Ecological Studies of Bacteria and Archaea and Their Major Subgroups

            With the astonishing rate that genomic and metagenomic sequence data sets are accumulating, there are many reasons to constrain the data analyses. One approach to such constrained analyses is to focus on select subsets of gene families that are particularly well suited for the tasks at hand. Such gene families have generally been referred to as “marker” genes. We are particularly interested in identifying and using such marker genes for phylogenetic and phylogeny-driven ecological studies of microbes and their communities (e.g., construction of species trees, phylogenetic based assignment of metagenomic sequence reads to taxonomic groups, phylogeny-based assessment of alpha- and beta-diversity of microbial communities from metagenomic data). We therefore refer to these as PhyEco (for phylogenetic and phylogenetic ecology) markers. The dual use of these PhyEco markers means that we needed to develop and apply a set of somewhat novel criteria for identification of the best candidates for such markers. The criteria we focused on included universality across the taxa of interest, ability to be used to produce robust phylogenetic trees that reflect as much as possible the evolution of the species from which the genes come, and low variation in copy number across taxa. We describe here an automated protocol for identifying potential PhyEco markers from a set of complete genome sequences. The protocol combines rapid searching, clustering and phylogenetic tree building algorithms to generate protein families that meet the criteria listed above. We report here the identification of PhyEco markers for different taxonomic levels including 40 for “all bacteria and archaea”, 114 for “all bacteria (greatly expanding on the ∼30 commonly used), and 100 s to 1000 s for some of the individual phyla of bacteria. This new list of PhyEco markers should allow much more detailed automated phylogenetic and phylogenetic ecology analyses of these groups than possible previously.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phylogenetic analysis of burkholderia species by multilocus sequence analysis.

              Burkholderia comprises more than 60 species of environmental, clinical, and agro-biotechnological relevance. Previous phylogenetic analyses of 16S rRNA, recA, gyrB, rpoB, and acdS gene sequences as well as genome sequence comparisons of different Burkholderia species have revealed two major species clusters. In this study, we undertook a multilocus sequence analysis of 77 type and reference strains of Burkholderia using atpD, gltB, lepA, and recA genes in combination with the 16S rRNA gene sequence and employed maximum likelihood and neighbor-joining criteria to test this further. The phylogenetic analysis revealed, with high supporting values, distinct lineages within the genus Burkholderia. The two large groups were named A and B, whereas the B. rhizoxinica/B. endofungorum, and B. andropogonis groups consisted of two and one species, respectively. The group A encompasses several plant-associated and saprophytic bacterial species. The group B comprises the B. cepacia complex (opportunistic human pathogens), the B. pseudomallei subgroup, which includes both human and animal pathogens, and an assemblage of plant pathogenic species. The distinct lineages present in Burkholderia suggest that each group might represent a different genus. However, it will be necessary to analyze the full set of Burkholderia species and explore whether enough phenotypic features exist among the different clusters to propose that these groups should be considered separate genera.
                Bookmark

                Author and article information

                Journal
                Genome Announc
                Genome Announc
                ga
                ga
                GA
                Genome Announcements
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2169-8287
                23 July 2015
                Jul-Aug 2015
                : 3
                : 4
                : e00803-15
                Affiliations
                National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
                Author notes
                Address correspondence to Gopaljee Jha, jmsgopal@ 123456nipgr.ac.in .
                Article
                genomeA00803-15
                10.1128/genomeA.00803-15
                4513155
                26205861
                82ae2ce7-0b73-4ed4-95bf-dc565081d305
                Copyright © 2015 Jha et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license.

                History
                : 11 June 2015
                : 22 June 2015
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 9, Pages: 2, Words: 900
                Categories
                Prokaryotes
                Custom metadata
                July/August 2015
                free

                Genetics
                Genetics

                Comments

                Comment on this article