27
views
0
recommends
+1 Recommend
0 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Left ventricular torsional mechanics and myocardial iron load in beta-thalassaemia major: a potential role of titin degradation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Iron may damage sarcomeric proteins through oxidative stress. We explored the left ventricular (LV) torsional mechanics in patients with beta-thalassaemia major and its relationship to myocardial iron load. Using HL-1 cell and B6D2F1 mouse models, we further determined the impact of iron load on proteolysis of the giant sarcomeric protein titin.

          Methods and results

          In 44 thalassaemia patients aged 25 ± 7 years and 38 healthy subjects, LV torsion and twisting velocities were determined at rest using speckle tracking echocardiography. Changes in LV torsional parameters during submaximal exercise testing were further assessed in 32 patients and 17 controls. Compared with controls, patients had significantly reduced LV apical rotation, torsion, systolic twisting velocity, and diastolic untwisting velocity. T2 * cardiac magnetic resonance findings correlated with resting diastolic untwisting velocity. The increments from baseline and resultant LV torsion and systolic and diastolic untwisting velocities during exercise were significantly lower in patients than controls. Significant correlations existed between LV systolic torsion and diastolic untwisting velocities in patients and controls, both at rest and during exercise. In HL-1 cells and ventricular myocardium of B6D2F1 mice overloaded with iron, the titin-stained pattern of sarcomeric structure became disrupted. Gel electrophoresis of iron-overloaded mouse myocardial tissue further showed significant decrease in the amount of titin isoforms and increase in titin degradation products.

          Conclusions

          Resting and dynamic LV torsional mechanics is impaired in patients with beta-thalassaemia major. Cell and animal models suggest a potential role of titin degradation in iron overload-induced alteration of LV torsional mechanics.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte.

          We have derived a cardiac muscle cell line, designated HL-1, from the AT-1 mouse atrial cardiomyocyte tumor lineage. HL-1 cells can be serially passaged, yet they maintain the ability to contract and retain differentiated cardiac morphological, biochemical, and electrophysiological properties. Ultrastructural characteristics typical of embryonic atrial cardiac muscle cells were found consistently in the cultured HL-1 cells. Reverse transcriptase-PCR-based analyses confirmed a pattern of gene expression similar to that of adult atrial myocytes, including expression of alpha-cardiac myosin heavy chain, alpha-cardiac actin, and connexin43. They also express the gene for atrial natriuretic factor. Immunohistochemical staining of the HL-1 cells indicated that the distribution of the cardiac-specific markers desmin, sarcomeric myosin, and atrial natriuretic factor was similar to that of cultured atrial cardiomyocytes. A delayed rectifier potassium current (IKr) was the most prominent outward current in HL-1 cells. The activating currents displayed inward rectification and deactivating current tails were voltage-dependent, saturated at >+20 mV, and were highly sensitive to dofetilide (IC50 of 46.9 nM). Specific binding of [3H]dofetilide was saturable and fit a one-site binding isotherm with a Kd of 140 +/- 60 nM and a Bmax of 118 fmol per 10(5) cells. HL-1 cells represent a cardiac myocyte cell line that can be repeatedly passaged and yet maintain a cardiac-specific phenotype.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Iron, oxidative stress and human health.

            The amount of iron within the cell is carefully regulated in order to provide an adequate level of the micronutrient while preventing its accumulation to toxic levels. Iron excess is believed to generate oxidative stress, understood as an increase in the steady state concentration of oxygen radical intermediates. The main aspects of cellular metabolism of iron, with special emphasis on the role of iron with respect to oxidative damage to lipid membranes, are briefly reviewed here. Both in vitro and in vivo models are examined. Finally, a discussion of iron overload and its impact on human health is included. Overall, further studies are required to assess more effective means to limit iron-dependent damage, by minimizing the formation and release of free radicals in tissues when the cellular iron steady state concentration is increased either as a consequence of disease or by therapeutic iron supplementation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Anthracyclines induce calpain-dependent titin proteolysis and necrosis in cardiomyocytes.

              Titin, the largest myofilament protein, serves as a template for sarcomere assembly and acts as a molecular spring to contribute to diastolic function. Titin is known to be extremely susceptible to calcium-dependent protease degradation in vitro. We hypothesized that titin degradation is an early event in doxorubicin-induced cardiac injury and that titin degradation occurs by activation of the calcium-dependent proteases, the calpains. Treatment of cultured adult rat cardiomyocytes with 1 or 3 micromol/liter doxorubicin for 24 h resulted in degradation of titin in myocyte lysates, which was confirmed by a reduction in immunostaining of an antibody to the spring-like (PEVK) domain of titin at the I-band of the sarcomere. The elastic domain of titin appears to be most susceptible to proteolysis because co-immunostaining with an antibody to titin at the M-line was preserved, suggesting targeted proteolysis of the spring-like domain of titin. Doxorubicin treatment for 1 h resulted in approximately 3-fold increase in calpain activity, which remained elevated at 48 h. Co-treatment with calpain inhibitors resulted in preservation of titin, reduction in myofibrillar disarray, and attenuation of cardiomyocyte necrosis but not apoptosis. Co-treatment with a caspase inhibitor did not prevent the degradation of titin, which precludes caspase-3 as an early mechanism of titin proteolysis. We conclude that calpain activation is an early event after doxorubicin treatment in cardiomyocytes and appears to target the degradation of titin. Proteolysis of the spring-like domain of titin may predispose cardiomyocytes to diastolic dysfunction, myofilament instability, and cell death by necrosis.
                Bookmark

                Author and article information

                Contributors
                Journal
                BMC Cardiovasc Disord
                BMC Cardiovasc Disord
                BMC Cardiovascular Disorders
                BioMed Central
                1471-2261
                2014
                12 April 2014
                : 14
                : 49
                Affiliations
                [1 ]Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
                [2 ]Department of Radiology, Queen Mary Hospital, Hong Kong, China
                [3 ]Division of Paediatric Cardiology, Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Queen Mary Hospital 102, Pokfulam Road, Hong Kong, China
                Article
                1471-2261-14-49
                10.1186/1471-2261-14-49
                4021258
                24725620
                82bcaafa-59eb-46f0-8c19-10722cd864da
                Copyright © 2014 Chen et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 15 January 2014
                : 7 April 2014
                Categories
                Research Article

                Cardiovascular Medicine
                thalassaemia,ventricular rotation,ventricular mechanics,exercise echocardiography,titin

                Comments

                Comment on this article